Effect of long-term horizontal load on the natural frequency of monopile supported offshore wind turbine structures

SUN Yilong1,XU Chengshun1,XI Renqiang1,2,DU Xiuli1,DOU Pengfei1,3

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (2) : 108-115.

PDF(1450 KB)
PDF(1450 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (2) : 108-115.

Effect of long-term horizontal load on the natural frequency of monopile supported offshore wind turbine structures

  • SUN Yilong1,XU Chengshun1,XI Renqiang1,2,DU Xiuli1,DOU Pengfei1,3
Author information +
History +

Abstract

Offshore wind turbine structures usually suffer wave, wind and other external lateral cyclic loads. The long-term cyclic loadings cause the variation of foundation stiffness. The offshore wind turbine structural system is sensitive to these dynamic cyclic loads, so it is very important to predict the long-term effect of cyclic loading on the natural frequency. This study developed a method to analyze the natural frequency of offshore wind turbine structural system with considering soil-pile interaction and the effect of long-term cyclic loading. This method is based on the kinematic equation of the damped system, considering the long-term effect of cyclic loading on the foundation stiffness by embedding the foundation stiffness degradation model. This method was then validated against engineering data and numerical calculation. Parameter studies were conduct to present the influence of the cyclic loading amplitude, cyclic number and pile diameter on the natural frequency of offshore wind turbine structure system by using the developed method. The results showed that the natural frequency of the offshore wind turbine structural system would decrease with increasing cyclic loading amplitude and cyclic number, and the natural vibration frequency of the fan structural system would be biased towards 1P with increasing the cyclic number. This method can be used to evaluate the natural frequency of monopile supported offshore wind turbine structure under the long-term cyclic loading, and provide some reference for the design of natural frequency of offshore wind turbine.

Key words

offshore wind turbine / Monopile / Long-term cyclic loading / Natural frequency

Cite this article

Download Citations
SUN Yilong1,XU Chengshun1,XI Renqiang1,2,DU Xiuli1,DOU Pengfei1,3. Effect of long-term horizontal load on the natural frequency of monopile supported offshore wind turbine structures[J]. Journal of Vibration and Shock, 2023, 42(2): 108-115

References

[1] Det Norske Veritas. DNV-OS-J101, Design of offshore wind turbine structures [S]. Norway: DNV Press, 2014.
[2] Lombardi D, Bhattacharya S, Wood D M. Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil [J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 165―180.
[3] Zaaijer M B. Foundation modelling to assess dynamic behaviour of offshore wind turbines[J]. Applied Ocean Research, 2006, 28(1):45-57.
[4] Byrne B. Foundation design for offshore wind turbines[C]// Géotechnique Lecture. London: University of Oxford, 2011.
[5] Bhattacharya S, Adhikari S. Experimental validation of soil–structure interaction of offshore wind turbines[J]. Soil Dynamics & Earthquake Engineering, 2011, 31(5-6):805-816.
[6] Arany L, Bhattacharya S, Macdonald J, et al. Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI[J]. Soil Dynamics & Earthquake Engineering, 2016, 83:18-32.
[7] 黄茂松, 钟锐. 海上风机部分埋入群桩水平-摇摆振动与结构共振分析[J]. 岩土工程学报, 2014, 36(2): 286-294.
Huang Maosong, Zhong Rui. Coupled horizontal-rocking vibration of partially embedded pile groups and its effect on resonance of offshore wind turbine structures [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 286―294. (in Chinese)
[8] Andersen L V, Vahdatirad M J, Sichani M T, et al. Natural frequencies of wind turbines on monopile foundations in clayey soils—A probabilistic approach[J]. Computers and Geotechnics. 2012, 43: 1-11.
[9] Darvishi-Alamouti S, Bahaari M, Moradi M. Natural frequency of offshore wind turbines on rigid and flexible monopiles in cohesionless soils with linear stiffness distribution[J]. Applied Ocean Research. 2017, 68: 91-102.
[10] 杨春宝,王睿,张建民. 单桩基础型近海风机系统自振频率实用计算方法[J]. 工程力学. 2018, 35(04): 219-225.
Yang Chunbao, Wang Rui, Zhang Jianmin. Numerical method for calculating system fundamental Frequencies of offshore wind turbines with monopile Foundations[J]. Engineering Mechanics. 2018, 35(04): 219-225. (In Chinese)
[11] Schaumann P, Lochte-Holtgrevens, Steppeler S. Special fatigue aspects in support structures of offshore wind turbines[J]. Materials Science and Engineering Technology, 2011,42(12): 1075-1081.
[12] Achmus M, Kuo Y S, Abdel-Rahman K. Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009, 36(5): 725-735.
[13] Chong S. Numerical simulation of offshore foundations subjected to repetitive loads[J]. Ocean Engineering. 2017, 142: 470-477.
[14] Chong S, Pasten C. Numerical study on long-term monopile foundation response[J]. Marine georesources & geotechnology. 2018, 36(2): 190-196.
[15] Nikitas G, Arany L, Aingaran S, et al. Predicting long term performance of offshore wind turbines using cyclic simple shear apparatus[J]. Soil Dynamics and Earthquake Engineering. 2017, 92: 678-683.
[16] Bayat M, L.V. Andersen, L.B. Ibsen. p-y-ẏ curves for dynamic analysis of offshore wind turbine monopile foundations [J]. Soil Dynamics and Earthquake Engineering. 2016, 90: 38-51.
[17] Bayat M, Andersen L V, Ibsen L B, et al. Influence of pore water in the seabed on dynamic response of offshore wind turbines on monopiles[J]. Soil dynamics and earthquake engineering. 2017, 100: 233-248.
[18] Cuéllar P, Mira P, Pastor M, et al. A numerical model for the transient analysis of offshore foundations under cyclic loading[J]. Computers and Geotechnics. 2014, 59: 75-86.
[19] Cuéllar P. Pile foundations for offshore wind turbines: numerical and experimental investigations on the behaviour under short-term and long-term cyclic loading[D]. Von der Fakultt VI-Planen Bauen Umwelt der Technischen,Universitt Berlin, 2011.
[20] Li J, Guan D, Chiew Y M, et al. Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading[J]. Ocean Engineering, 2020, 217:107893.
[21] 马宏旺, 杨峻, 陈龙珠. 长期反复荷载作用对海上风电单桩基础的影响分析[J]. 振动与冲击. 2018(02): 121-126.
MA Hongwang, YANG Jun, CHEN Longzhu. Effects of long-term cyclic loadings on offshore wind turbine monopile foundation[J]. Journal of vibration and shock. 2018(02): 121-126.
[22] 陈琛, 马宏旺, 李玉韬, 芦直跃. 冲刷对海上风电单桩基础自振频率影响的研究[J]. 振动与冲击. 2020, 39(22): 16-22.
CHEN Chen, MA Hongwang, LI Yutao, LU Zhiyue. Effects of scour on the natural frequency of offshore wind turbine structures[J]. Journal of vibration and shock. 2020, 39(22): 16-22.
[23] Lombardi. D. S. Bhattacharya, D. Muir Wood. Dynamic soil–structure interaction of monopile supported wind turbines in cohesive soil [J]. Soil Dynamics and Earthquake Engineering, 2013 (49):165-180.
[24] Bhattacharya S, Cox J A, D Lombardi, et al. Dynamics of offshore wind turbines supported on two foundations[J]. ICE Proceedings Geotechnical Engineering, 2013, 166(2):159-169.
[25] Carswell W, Arwade S R, Degroot D J, et al. Natural frequency degradation and permanent accumulated rotation for offshore wind turbine monopiles in clay[J]. Renewable Energy. 2016, 97: 319-330.
[26] Clough R W, Penzien J. Dynamics of structures [M]. New York: McGraw-Hill, 1975.
[27] Makris N, Gazetas G. Dynamic pile-soil-pile interaction. part Ⅱ: lateral and seismic response [J]. Earthquake Engineering and Structural Dynamics, 1992, 21: 145-162.
[28] 孙毅龙, 许成顺, 杜修力, 杜秀萍, 席仁强. 海上风电大直径单桩的修正p-y曲线模型[J]. 工程力学, 2021, 38(4): 44-53.
SUN Yi-long, XU Cheng-shun, DU Xiu-li, DU Xiu-ping, XI Ren-qiang. A modified p-y curve model of large-monopiles of offshore wind power plants[J]. Engineering Mechanics, 2021, 38(4): 44-53.
[29] American Petroleum Institute. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-working Stress Design[S]. Washington: API Publishing Services, 2005.
[30] Sun YL, Xu CS, Du XL, et al. Nonlinear lateral response of offshore large-diameter monopile in sand[J]. Ocean Engineering, 2020, 216:108013.
[31] Huurman M. Development of traffic induced permanent strain in concrete block pavements[J]. Heron, 1996,41(1): 29-52.
[32] Kuo Y S, Achmus M, Abdel-Rahman K. Minimum embedded length of cyclic horizontally loaded monopiles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138(3): 357-363.
[33] 胡安峰,南博文,陈缘,等. 基于砂土刚度衰减模型的修正p-y曲线法[J]. 上海交通大学学报. 2020, 54(12): 1316-1323.
HU Anfeng, NAN Bowen, CHEN Yuan, et al. Modified p-y Curves Method Based on Degradation Stiffness Model of Sand[J]. Journal of Shanghai Jiao Tong University. 2020, 54(12): 1316-1323.
[34] Amar Bouzid D, Bhattacharya S, Otsmane L. Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction[J]. Journal of Rock Mechanics and Geotechnical Engineering. 2018, 10(2): 333-346.
[35] 张纪蒙,张陈蓉,张凯. 砂土中大直径单桩水平循环加载模型试验研究[J]. 岩土力学. 2021, 42(03): 783-789.
ZHANG Ji-meng, ZHANG Chen-rong, ZHANG Kai. Model tests on large-diameter single pile under cyclic lateral loads in sand[J]. Rock and Soil Mechanics. 2021, 42(03): 783-789.
[36] Luo R, Yang M, Li W. Numerical study of diameter effect on accumulated deformation of laterally loaded monopiles in sand[J]. European Journal of Environmental & Civil Engineering. 2018: 1–13.
[37] Ahmed S S, Hawlader B. Numerical Analysis of Large-Diameter Monopiles in Dense Sand Supporting Offshore Wind Turbines[J]. International Journal of Geomechanics. 2016, 16(5): 04016018.
 
PDF(1450 KB)

574

Accesses

0

Citation

Detail

Sections
Recommended

/