Equivalent scaling method for the transient dynamic response of a megawatt-level wind turbine gearbox transmission system

RAN Feng1,ZHU Caichao1,TAN Jianjun1,SONG Chaosheng1,ZHU Yongchao1,CHEN Shuai2

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (2) : 205-215.

PDF(4275 KB)
PDF(4275 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (2) : 205-215.

Equivalent scaling method for the transient dynamic response of a megawatt-level wind turbine gearbox transmission system

  • RAN Feng1,ZHU Caichao1,TAN Jianjun1,SONG Chaosheng1,ZHU Yongchao1,CHEN Shuai2
Author information +
History +

Abstract

With the development of wind turbine gearbox towards 10MW and above ultra-high power, the problem of the full-size testing is limited by the power of the test stand becomes more and more obvious. In this paper, an equivalent scaling method is proposed for the transient dynamic response of the megawatt-level wind turbine gearbox transmission system. Taking a certain type of 5MW wind turbine gearbox as the research object, a wind turbine gearbox transmission system variable speed dynamic model is established by dimensional theory. The dynamic similarity relationship of equivalent reduction of wind turbine gearbox transmission system suitable for variable speed conditions is analyzed, and the inherent characteristics and vibration response of the prototype and scaled wind turbine gearbox transmission system are compared and analyzed. The research results show that the natural frequency and mode shape of the scaled wind turbine gearbox transmission system meet the similar relationship with the prototype, and the steady-state response and transient response of the scaled wind turbine gearbox transmission system meet the similar relationship with the prototype, and the maximum error is less than 3%. This method can provide a certain reference basis for the equivalent scale design of wind turbine gearbox.

Key words

wind turbine gearbox / transmission system / dynamic similarity / modal analysis / dynamic response

Cite this article

Download Citations
RAN Feng1,ZHU Caichao1,TAN Jianjun1,SONG Chaosheng1,ZHU Yongchao1,CHEN Shuai2. Equivalent scaling method for the transient dynamic response of a megawatt-level wind turbine gearbox transmission system[J]. Journal of Vibration and Shock, 2023, 42(2): 205-215

References

[1] 李垚,朱才朝,陶友传,等. 风电机组可靠性研究现状与发展趋势[J]. 中国机械工程, 2017, 28(09): 1125-1133.
LI Yao, ZHU Caichao, TAO Youchuan, et al. Research status and development tendency of wind turbine reliability [J] .China Mechanical Engineering, 2017, 28(09): 1125-1133.
[2] OH K-Y, LEE J-K, BANG H-J, et al. Development of a 20 kW wind turbine simulator with similarities to a 3 MW wind turbine [J]. Renewable Energy, 2014, 62: 379-387.
[3] VISELLI A M, GOUPEE A J, DAGHER H J. Model Test of a 1:8-Scale Floating Wind Turbine Offshore in the Gulf of Maine [J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme, 2015, 137(4).
[4] LIM C W. Design and Manufacture of Small-Scale Wind Turbine Simulator to Emulate Torque Response of MW Wind Turbine [J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(4): 409-418.
[5] 张进,赵春华,钟先友,等. 风力发电机故障模拟试验台装置研制[J]. 机械设计与制造, 2013, (08): 120-2+6.
ZHANG Jin, ZHAO Chun-hua, ZHONG Xian-you, et al. Design of wind turbine fault simulation test-bed device [J]. Machinery Design & Manufacture, 2013, (08): 120-2+6.
[6] YOUNG Y L. Dynamic hydroelastic scaling of self-adaptive composite marine rotors [J]. Composite Structures, 2010, 92(1): 97-106.
[7] ZHANG C, WEI J, HOU S, et al. Scaling law of gear transmission system obtained from dynamic equation and finite element method [J]. Mechanism and Machine Theory, 2021, 159: 104285.
[8] 缪辉, 臧朝平. 航空发动机低压转子系统的动力学相似设计方法[J]. 航空动力学报, 2020, 35(04): 766-776.
MIAO Hui, ZANG Chaoping. Dynamic similarity design method for aero-engine low-pressure rotor system [J]. Journal of Aerospace Power, 2020, 35(04): 766-776.
[9] 罗忠,陈广凯,李建章,等. 考虑轴承刚度的转子系统动力学相似模型设计[J]. 东北大学学报(自然科学版), 2015, (36): 402-405.
LUO Zhong, CHEN Guangkai, LI Jianzhang. Design of dynamic similarity model of rotor system considering the bearing stiffness [J]. Journal of Northeastern University(Natural Science), 2015, (36): 402-405.
[10] 李雷,罗忠,何凤霞,等. 考虑变幂数的畸变动力学相似试验模型设计方法及试验研究[J]. 机械工程学报, 2020, 56(23): 107-117.
LI Lei, LUO Zhong, HE Fengxia, et al. Design method of distorted dynamics similitude test model considering variable power and experimental study [J]. Journal of Mechanical Engineering, 2020, 56(23): 107-117.
[11] 翟洪飞,朱才朝,宋朝省, 等. 大功率风电齿轮箱系统耦合动态特性研究[J]. 振动与冲击, 2017, 36(08): 97-104.ZHAI Hongfei, ZHU Caichao, SONG Chaosheng, et al. Dynamic characteristics of a high-power wind turbine gearbox coupled system [J]. Journal of Vibration and Shock, 2017, 36(08): 97-104.
[12] 谭建军,朱才朝,宋朝省,等. 风电机组传动链刚柔耦合动态特性分析[J]. 太阳能学报, 2020, 41(07): 341-351.
TAN Jianjun, ZHU Caichao, SONG Chaosheng, et al. Dynamic characteristics analysis of wind turbine drivetrain with rigid-flexible coupling [J]. Acta Energiae Solaris Sinica, 2020, 41(07): 341-351.
[13] 杨通强. 斜齿行星传动动力学研究[D]. 天津:天津大学, 2004.
YANG Tongqiang. A study on dynamics of helical planetary gear train [D]. Tianjin: Tianjin University, 2004.
[14] 郑朋. 斜齿行星轮副耦合故障下的动态特性分析[D]. 昆明:昆明理工大学, 2020.
ZHENG Peng. Dynamic characteristics analysis of coupling faults of helical planetary gear pairs [D]. Kunming: Kunming University of Science and Technology, 2020
[15] LIU C, QIN D, LIM T C, et al. Dynamic characteristics of the herringbone planetary gear set during the variable speed process [J]. Journal of Sound and Vibration, 2014, 333(24): 6498-6515.
[16] TAN J, ZHU C, SONG C, et al. Effects of Flexibility and Suspension Configuration of Main Shaft on Dynamic Characteristics of Wind Turbine Drivetrain [J]. Chinese Journal of Mechanical Engineering, 2019, 32(02): 224-238.
[17] WEI J, ZHANG A, QIN D, et al. A coupling dynamics analysis method for a multistage planetary gear system [J]. Mechanism and Machine Theory, 2017, 110: 27-49.
[18] ZHANG Y M, WANG Q B, MA H, et al. Dynamic analysis of three-dimensional helical geared rotor system with geometric eccentricity [J]. Journal of Mechanical Science and Technology, 2013, 27(11): 3231-3242.
[19] 丁鑫. TBM刀盘驱动系统分层次建模与耦合振动机理[D]. 大连:大连理工大学, 2017.
DING Xin. Hierarchical modeling method and coupled vibration mechanism of TBM cutterhead driving system [D]. Dalian: Dalian University Technology, 2017.
[20] 黄超. 少齿差行星减速器动态特性分析及非线性振动研究[D]. 重庆:重庆大学, 2013.
HUANG Chao. Dynamic characteristics analysis and nonlinear vibration research on a planetary reducer with small tooth number difference [D]. Chongqing: Chongqing University, 2013.
[21] 张喜清,项昌乐,刘辉. 履带车辆变速箱箱体的试验模态参数识别及验证[J]. 吉林大学学报(工学版), 2011, 41(04): 927-931.
ZHANG Xiqing, XIANG Changle, LIU Hui. Identification and validation of test modal parameters of gearbox housing in a certain tracked vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(04): 927-931.
PDF(4275 KB)

Accesses

Citation

Detail

Sections
Recommended

/