Anti-penetration performance of pre-stressed ceramic composite construction

MA Hao1, CHEN Meiduo1, MIAO Chunhe1, WANG Pengfei1, XU Songlin1,2

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (21) : 160-168.

PDF(2054 KB)
PDF(2054 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (21) : 160-168.

Anti-penetration performance of pre-stressed ceramic composite construction

  • MA Hao1, CHEN Meiduo1, MIAO Chunhe1, WANG Pengfei1, XU Songlin1,2
Author information +
History +

Abstract

In order to meet the requirements of lightweight and high toughness of ceramic protective structures, it is necessary to adopt new composite structures to improve the energy dissipation efficiency in the process of anti-penetration. In this paper, a pre-stressed ceramic composite structure is designed, that is, the pre-stress is applied by spring, and the ceramic and metal frame are combined into protective elements, and the protective elements are combined to form the pre-stressed ceramic composite structure. Since it is difficult to carry out relevant experiments, this paper uses ABAQUS software for modeling and numerical simulation analysis. Based on the dimensional analysis method, the numerical calculation scheme of penetration of the composite structure under five kinds of velocity and five kinds of pre-stress is designed, and the influence law of pre-stress on the penetration resistance of the composite structure is studied. The results show that with the increase of pre-stress, the residual velocity of the bullet decreases gradually, and the penetration resistance of the new protective structure increases gradually. The influence law of inertia effect, strength effect, deformation characteristics and dimensionless parameters related to pre-stress are analyzed, and the expression of residual velocity of the structure under high-speed impact is proposed. The introduction of pre-stress in this study has a good reference significance for the design of penetration resistance of new ceramic protective structures.

Key words

dynamics of impact / penetration / pre-stress / ceramic composite construction / numerical simulation

Cite this article

Download Citations
MA Hao1, CHEN Meiduo1, MIAO Chunhe1, WANG Pengfei1, XU Songlin1,2. Anti-penetration performance of pre-stressed ceramic composite construction[J]. Journal of Vibration and Shock, 2023, 42(21): 160-168

References

[1] 徐松林, 张侃, 郑文, 等. 高孔隙率Al2O3微孔陶瓷冲击性能实验研究 [J]. 实验力学, 2008, 23(6): 525-532.
    XU Song-lin, ZHANG Kan, ZHENG Wen, et al. Experimental Study of Impact Performance of Al2O3 Microvoid Creamics with High Porosity [J]. Journal of Experimental Mechanics, 2008, 23(06):525-532.
[2] 徐松林, 刘永贵, 王道荣, 等. 高孔隙率Al2O3微孔陶瓷压剪冲击动力学特性 [J]. 高压物理学报, 2013, 27(5): 662-670.
    XU Song-lin, Liu Yong-gui, WANG Dao-rong, et al. Dynamic Responses of Al2O3 Microvoid Ceramics with High Porosity under Combined Pressure and Shear Impact Loading [J]. Chinese Journal of High Pressure Physics, 2013, 27(05):662-670.
[3]  魏汝斌,李锋,梁勇芳,李英建,翟文,刘欣,张文婷.碳化硅抗弹陶瓷的研究进展及在装甲防护领域的应用[J].兵器材料科学与工程,2014, 37(06):145-148.
    WEI Ru-bing, LI Feng, LIANG Yong-fang, et al. Research progress and application of sic elastomer ceramics in armor protection[J]. Ordnance Material Science and Engineering, 2014, 37(06):145-148.
[4] 邹慧辉, 宋春明, 王德荣, 等. 陶瓷-活性粉末混凝土复合靶抗侵彻试验研究 [J]. 振动与冲击, 2019, 38(11): 141-151+165.
    ZOU Hui-hui, SONG Chun-ming, WANG Dao-rong, et al. Anti-penetration tests for ceramic-reactive powder concrete composite targets[J]. Joural of vibration and shock, 2019, 38(11): 141-151+165.
[5] 毛亮, 王华, 姜春兰, 等. 钨合金球形破片侵彻陶瓷/DFRP复合靶的弹道极限速度 [J]. 振动与冲击, 2015, 34(13): 1-5.
    MAO Liang, WANG Hua, JIANG Chun-lan, et al. Ballistic limit velocity of tungsten alloy spherical fragment penetrating ceramic /DFRP composite target plates[J]. Joural of vibration and shock, 2015, 34(13): 1-5.
[6] 殷文骏, 程怡豪, 宋春明, 等. 弹体高速侵彻陶瓷复合厚靶的计算模型研究 [J]. 振动与冲击, 2017, 36(1): 223-229.
    YIN Wen-jun, CHENG Yi-hao, SONG Chun-ming, et al. Calculation model for a high-velocity projectile penetrating a ceramic-composite target[J]. Joural of vibration and shock, 2017, 36(1): 223-229.
[7] ZHANG B, WANG Y, DU S, et al. An analysis of bi-layer ceramic armor and optimization of protection efficiency [J]. Materials & Design, 2021, 203.
[8] KRISHNAN K, SOCKALINGAM S, BANSAL S, et al. Numerical simulation of ceramic composite armor subjected to ballistic impact [J]. Composites Part B: Engineering, 2010, 41(8): 583-593.
[9] FELI S, ASGARI M R. Finite element simulation of ceramic/composite armor under ballistic impact [J]. Composites Part B: Engineering, 2011, 42(4): 771-780.
[10] GUO G, ALAM S, PEEL L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles [J]. International Journal of Impact Engineering, 2021, 157.
[11] XIN Z, WANG Y, FU Q, et al. Effect of glass cover layer on the ballistic performance of transparent ceramic armor [J]. Ceramics International, 2021, 47(20): 29277-29284.
[12] HU P, CHENG Y, ZHANG P, et al. A metal/UHMWPE/SiC multi-layered composite armor against ballistic impact of flat-nosed projectile [J]. Ceramics International, 2021, 47(16): 22497-22513.
[13] WANG Q, CHEN Z, CHEN Z. Design and characteristics of hybrid composite armor subjected to projectile impact [J]. Materials & Design, 2013, 46: 634-639.
[14] HOLMQUIST T J, JOHNSON G R. Modeling prestressed ceramic and its effect on ballistic performance [J]. International Journal of Impact Engineering, 2005, 31(2): 113-127.
[15] 吴雪, 张先锋, 丁力, 等. 预应力对陶瓷抗侵彻性能影响规律的数值模拟 [J]. 高压物理学报, 2018, 32(4): 75-82.
    WU Xue, ZHANG Xian-feng, DING Li, et al. Numerical Simulation of the Effect of Pre-stress on the Ballistic Performance of Ceramics [J]. Chinese Journal of High Pressure Physics, 2018, 32(04):75-82.
[16] SERJOUEI A, GOUR G, ZHANG X, et al. On improving ballistic limit of bi-layer ceramic–metal armor [J]. International Journal of Impact Engineering, 2017, 105: 54-67.
[17] ZHANG R, HAN B, LI L, et al. Influence of prestress on ballistic performance of bi-layer ceramic composite armors: Experiments and simulations [J]. Composite Structures, 2019, 227.
[18] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering fracture mechanics, 1985, 21(1): 31-48.
[19] HOLMQUIST T J, JOHNSON G R. A Computational Constitutive Model for Glass Subjected to Large Strains, High Strain Rates and High Pressures [J]. Journal of Applied Mechanics, 2011, 78(5).
[20] 仲冬维. SiC陶瓷单颗粒刻划磨粒磨损特性仿真及实验研究 [D], 哈尔滨:哈尔滨理工大学,2020.
[21] 高华, 熊超, 殷军辉, 等. 多层异质复合靶板抗侵彻性能试验及结构优化设计 [J]. 弹道学报, 2018, 30(3): 67-72.
    GAO Hua, XIONG Chao, YIN Jun-hui, et al. Anti-penetration Performance Test and Structural Optimization Design of Multilayer Heterogeneous Composite Target-plate [J]. Journal of Ballistics, 2018, 30(03):67-72.
[22] CORBETT G G, REID S R, JOHNSON W. Impact loading of plates and shells by free-flying projectiles: A review [J]. International Journal of Impact Engineering, 1996, 18(2): 141-230.
[23] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93-116.
[24] 陈丽娜, 单俊芳, 周李姜, 等. 应力状态对水泥砂浆侵彻性能的影响 [J]. 振动与冲击, 2020, 39(15): 32-40.
    CHEN Li-na, SHAN Jun-fang, ZHOU Li-jiang, et al. Effects of stress state on penetration performance of cement mortar[J]. Joural of vibration and shock, 2020, 39(15): 32-40.
[25] ZHANG L, SHAN J, MIAO C, et al. The cratering performance of concrete target under true triaxial confinements [J]. International Journal of Mechanical Sciences, 2021, 210.
[26] 苗春贺, 陈丽娜, 单俊芳, 等. 水泥砂浆抗弹性能研究 [J]. 高压物理学报, 2021, 35(2): 111-121.
    MIAO Chun-he, CHEN Li-na, SHAN Jun-fang, et al. Research on the Ballistic Performance of Cement Mortar[J]. Chinese Journal of high pressure physics, 2021, 35(2): 111-121.
[27] DEY S, BøRVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation [J]. International Journal of Solids and Structures, 2007, 44(20): 6701-6723.
[28] RECHT R, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384-390.
PDF(2054 KB)

397

Accesses

0

Citation

Detail

Sections
Recommended

/