In shaking table tests, the noise embedded in the experimental data obtained using photogrammetry inevitably causes error. Structural performance cannot be fully and correctly reflected by the heavily noise-contaminated experimental data. By analyzing the displacement noise caused by photogrammetry, it was found that the dominant frequency distribution of the noise ranges over 0~5 Hz. Also, the statistical parameters of the noise were calculated. Accordingly, the variance and standard deviation of the noise signals were utilized to assess the measurement errors in displacement, velocity, acceleration and interstory-drift ratio responses. The derivation results elucidate that the finite difference method significantly magnifies velocity results f_s times and acceleration results f_s^2 times, respectively, where f_s is the sample frequency. At last, the limits for displacement noise in photogrammetry are suggested, considering the critical parameters commonly used in shaking table tests.
Key words
noise /
error analysis /
interstory drift ratio /
acceleration /
shaking table test /
photogrammetry
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 吕西林. 复杂高层建筑结构抗震理论与应用[M]. 北京:科学出版社,2007.
[2] 周颖,吕西林. 建筑结构振动台模型试验方法与技术[M].北京:科学出版社,2012.
[3] Lu X, Cui Y, Liu J, Gao W. Shaking table test and numerical simulation of a 1/2-scale self-centering reinforced concrete frame [J]. Earthquake Engineering Structural Dynamics, 2015, 44:1899–1917.
[4] Yoon H, Shin J, Spencer Jr. B F. Structural displacement measurement using an unmanned aerial system [J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33:183–192.
[5] Van Wassenbergh S, Ortlieb E J, Mielke M, et al. Woodpeckers minimize cranial absorption of shocks [J]. Current Biology, 2022,32(14):3189-3194.e4.
[6] 田国伟,韩晓健,徐秀丽,刘伟庆. 基于视频图像处理技术的振动台试验动态位移测量方法[J]. 世界地震工程,2011,27(3):174-179.
TIAN Guowei, HAN Xiaojian, XU Xiuli, LIU Weiqiang. Measuring method of dynamic displacement in shaking table test based on the technology of video processing [J]. World Earthquake Engineering, 2011,27(3):174-179.
[7] 杨会臣,贾金生,王海波. 高速摄影测量在振动台动力模型试验中的应用[J]. 水电能源科学,2012,30(1):153-155,87.
YANG Huichen, JIA Jinsheng, WANG Haibo. Application of high speed photogrammetry to vibrating platform dynamic model test [J]. Water Resources and Power, 2012, 30(1):153-155,87.
[8] 季云峰. 结构动位移测试的计算机视觉方法实现[J]. 同济大学学报(自然科学版),2013,41(11):1670-1674.
JI Yunfeng. Computer vision approach for structural dynamic displacement measurement [J]. Journal of Tongji University (Natural Science), 2013,41(11):1670-1674.
[9] 陈苏,陈国兴,韩晓健,戚承志,杜修力. 基于计算机视觉的位移测试方法研究与实现[J]. 振动与冲击,2015,34(18):73-78,99.
CHEN Su, CHEN Guoxing, HAN Xiaojian, QI Chengzhi, DU Xiuli. Development of vision-based displacement test method [J]. Journal of Vibration and Shock, 2015,34(18):73-78,99.
[10] 王婧,李双江,田石柱. 双目立体视觉技术在结构试验中的应用[J]. 应用光学,2018,39(6):821-826.
WANG Jing, LI Shuangjiang, TIAN Shizhu. Application of binocular stereo vision technology in structural test [J]. Journal of Applied Optics, 2018,39(6):821-826.
[11] 王树根. 摄影测量原理与应用[M]. 武汉:武汉大学出版社,2009.
WANG Shugen. Principles and applications of photogrammetry [M]. Wuhan: Wuhan University Press, 2009.
[12] 王晓光,梁晋,尤威,梁瑜,刘烈金. 地震振动台实验三维全场位移测量的研究[J]. 应用光学,2016,37(4):567-572.
WANG Xiaoguang, Liang Jin, You Wei, Liang Yu, LIU Liejin. 3D full field displacement measurement of seismic shaking table experiment [J]. Journal of Applied Optics, 2016,37(4):567-572.
[13] GB 50011-2010(2016版), 建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2016.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}