Fatigue test and deformation performance of prefabricated replaceable graded-yielding energy-dissipation connectors

LI Fangyu1,DU Yongfeng1,2,LI Hu1,CHI Peihong1

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (22) : 49-59.

PDF(3608 KB)
PDF(3608 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (22) : 49-59.

Fatigue test and deformation performance of prefabricated replaceable graded-yielding energy-dissipation connectors

  • LI Fangyu1,DU Yongfeng1,2,LI Hu1,CHI Peihong1
Author information +
History +

Abstract

A replaceable graded-yielding energy-dissipation connector (RGEC) is proposed for prefabricated concrete beam-column joint. The RGEC can control the yield and damage and improve the rehabilitation property of the structure. Low cyclic loading test on 5 specimens were conducted to study the mechanical properties of RGEC, such as fatigue performance, energy dissipation capacity, etc. The experimental results indicate that RGEC have good fatigue performance and stable hysteretic behavior, and the hysteretic curves of RGEC specimens exhibit a clear graded yielding mechanism. The stiffness, bearing capacity and energy dissipation capacity of specimens remain stable in the normal working stage, and still have sufficient performance reserve when reaching fatigue failure, and the failure form is mainly in the form of bending-shear failure of the bending-shear component. Parametrical analysis was carried out based on ABAQUS for deformation performance of the bending-shear component and the buckling-constrained component. The results show that the strain uneven distribution is aggravated with the increase of the width-thickness ratio or constraint clearance of the buckling-constrained component, and the buckling wave number is increased with the increase of the width-thickness ratio. The deformation mode changes from bending deformation to shearing deformation with the decrease of yield stress contour height ratio or aspect ratio of bending-shear component.

Key words

prefabricated concrete frame structure / graded yield / replaceable connector / low cyclic loading test / fatigue performance / deformation performance

Cite this article

Download Citations
LI Fangyu1,DU Yongfeng1,2,LI Hu1,CHI Peihong1. Fatigue test and deformation performance of prefabricated replaceable graded-yielding energy-dissipation connectors[J]. Journal of Vibration and Shock, 2023, 42(22): 49-59

References

[1] BRECCOLOTTI M, GENTILE S, TOMMASINI M, et al. Beam-column joints in continuous RC frames: Comparison between cast-in-situ and precast solutions[J]. Engineering Structures,2016,127:129-44.
[2] KAYA M, ARSLAN A S. Repair of post-tensioned precast beam to column connections[J]. The Structural Design of Tall & Special Buildings,2010,21(11):844-854.
[3] SAVOIA M, BURATTI N, VINCENZI L. Damage and collapses in industrial precast buildings after the 2012 Emilia earthquake[J]. Engineering Structures,2017,137:162-180.
[4] 周颖, 吴浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性[J]. 工程力学, 2019,36(06):1-12.
ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience[J]. Engineering Mechanics,2019, 36(06):1-12.
[5] LI Z, QI Y, TENG J. Experimental investigation of prefabricated beam-to-column steel joints for precast concrete structures under cyclic loading[J].Engineering Structures, 2020,209:1-16.
[6] 黄炜,胡高兴. 可恢复预制装配式RC梁柱节点抗震性能研究[J].工程力学.doi:10.6052/j.issn. 1000-4750.2021.07.0554.
HUANG Wei, HU Gaoxing. Seismic performance of earthquake-resilient precast RC beam-column joints[J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750. 2021.07.0554.
[7] 冯世强, 杨勇, 薛亦聪, 等. 预制装配式混合框架屈曲约束狗骨式节点抗震性能试验研究[J]. 建筑结构学报, 2022, 43(01):59-68.
FENG Shiqiang, YANG Yong, XUE Yicong, et al. Experimental study on seismic performance of prefabricated hybrid joints with buckling-restrained dog-bone steel beam[J]. Journal of Building Structures,2022, 43(01): 59-68.
[8] 谢鲁齐, 吴京, 章锦洋, 等. 基于可更换耗能连接的装配式混凝土梁柱节点力学性能试验研究[J]. 东南大学学报(自然科学版), 2021, 51(01):1-8.
XIE Luqi, WU Jing, ZHANG Jinyang, et al. Experimental study on mechanical property of precast concrete frame with replaceable energy dissipation connectors[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(01):1-8.
[9] HOVEIDAE N, TREMBLAY R, RAFEZY B, et al. Numerical investigation of seismic behavior of short-core all-steel buckling restrained braces [J].Journal of Constructional Steel Research,2015,114:89-99.
[10] WANG C, LIU Y, ZHENG X. Experimental investigation of a precast concrete connection with all-steel bamboo-shaped energy dissipaters[J]. Engineering Structures, 2019, 178:298-308.
[11] 叶建峰, 郑莲琼, 颜桂云, 等. 装配式可更换耗能铰滞回性能试验研究[J]. 工程力学, 2021,38(08):42-54.
YE Jianfeng, ZHENG Lianqiong, YAN Guiyun, et al. Experimental study on hysteretic performance of replaceable energy-dissipating prefabricated hinges[J]. Engineering Mechanics, 2021,38(08):42-54.
[12] 谢鲁齐, 吴京, 章锦洋, 等. 可更换耗能连接力学机理及变形性能研究[J]. 工程力学, 2020,37(06):186-195.
XIE Luqi, WU Jing, ZHANG Jinyang, et al. Study on the mechanical and deformation properties of replaceable energy dissipation connectors[J]. Engineering Mechanics, 2020, 37(06):186-195.
[13] 刘伟庆,缪卓君,王曙光,等.新型分阶段屈服型软钢阻尼器的试验研究及数值模拟[J].振动与冲击,2016, 35(3):87-92.
LIU Weiqing, MIAO Zhuojun, WANG Shuguang, et al. Experiments and numerical prediction on a new type of mild steel damper with separable phase yielding[J]. Journal of Vibration and Shock,2016,35(3):87-92.
[14] 邓开来, 潘鹏. 变截面软钢剪切阻尼器试验研究[J].工程力学, 2016, 33(5): 82-88.
DENG Kailai, PAN Peng. Experimental study of steel shear panel dampers with varying cross-sections[J]. Engineering Mechanics,2016,33(5):82-88.
[15] ZHU B J, WANG T, ZHANG L X. Quasi-static test of assembled steel shear panel dampers with optimized shapes[J]. Engineering Structures, 2018, 172:346-357.
[16] ABEBE D Y, JEONG S J, GETAHUNE B M, et al. Hysteretic characteristics of shear panel damper made of low yield point steel[J]. Material Research Innovations, 2016, 19(S5):902-910.
[17] 许立言,聂鑫,樊健生,等.低屈服点钢剪切型阻尼器试验研究[J].清华大学学报(自然科学版),2016,56(9):991-996.
XU Liyan, NIE Xin, FAN Jiansheng, et al. Experimental investigation of low-yield-point steel shear panel dampers[J]. Journal of Tsinghua University (Sci & Technol), 2016, 56(9):991-996.
[18] GHABRAIE K, CHAN R, HUANG X, et al. Shape optimization of metallic yielding devices for passive mitigation of seismic energy[J]. Engineering Structures, 2010, 32(8): 2258-2267.
[19] 杜永峰, 李芳玉, 李虎, 等.装配式可更换分级屈服耗能连接集成形状优化及试验研究[J/OL]. 工程力学:1-13 [2023-01-02].http://kns.cnki.net/kcms/detail/11.2595.O3.20221226.1210.001.html
DU Yongfeng, LI Fangyu, LI Hu, et al. Integrated shape optimization and experimental study on prefabricated replaceable graded-yielding energy-dissipation connectors [J/OL]. Engineering Mechanics:1-13[2023-01-02]. http://kns. cnki.net/kcms/detail/11.2595.O3.20221226.1210.001.html
[20] 金属材料拉伸试验: 第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.
[21] 建筑消能减震技术规程: JGJ 297—2013[S]. 北京: 中国建筑工业出版社, 2013.
[22] 建筑抗震试验方法规程: JGJ 101—2015[S]. 北京: 中国建筑工业出版社, 2015.
[23] 石永久, 王萌, 王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(3):293-300.
SHI Yongjiu, WANG Meng, WANG Yuanqing. Experimental study of structural steel constitutive relationship under cyclic loading[J]. Journal of Building Material, 2012,15(3):293-300.
[24] YU H L, JEONG D Y. Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens[J].Theoretical and Applied Fracture Mechanics, 2010, 54(1):54-62.
[25] 周天华, 李文超, 管宇, 等. 基于应力三轴度的钢框架循环加载损伤分析[J]. 工程力学, 2014, 31(7):146-155.
ZHOU Tianhua, LI Wenchao, GUAN Yu, et al. Damage analysis of steel frames under cyclic load based on stress triaxiality[J]. Engineering Mechanics, 2014, 31(7): 146-155.
[26] HOVEIDAE N, RAFEZY B. Overall buckling behavior of all-steel buckling restrained braces[J]. Journal of Constructional Steel Research, 2012, 79:151-158.
PDF(3608 KB)

337

Accesses

0

Citation

Detail

Sections
Recommended

/