An experimental study on rock breaking law by rock bullet impacting

LIU Yong1,2, GUO Xinhui1,2, WEI Jianping1,2, ZHANG Hongtu1,2

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (4) : 270-278.

PDF(1568 KB)
PDF(1568 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (4) : 270-278.

An experimental study on rock breaking law by rock bullet impacting

  • LIU Yong1,2, GUO Xinhui1,2, WEI Jianping1,2, ZHANG Hongtu1,2
Author information +
History +

Abstract

In order to solve the problems of rapid wear of drilling tools and low drilling efficiency in the process of deep rock excavation, based on the particle impact rock breaking technology, a method of using high-pressure gas to accelerate the impact of rock bullets on the pre-cracked rock mass of the advancing face was proposed to reduce the wear of drilling tools. The SHPB experiment and the three-dimensional scanning experiment were used to test the absorbed energy of rock failure and the newly added surface area, and a theoretical model for calculating the absorbed energy of rock impact failure was constructed. At the same time, a self-developed rock bullet impact rock breaking experimental device was used to study the influence of gas pressure, bullet mass and lithology on the rock breaking. The results show that the specific surface free energy "γ" _"s"  of the experimental granite rock sample was 6.34 mJ/mm2, based on the measured rock fragmentation absorbed energy and added surface area. Increasing the gas pressure can effectively increase the impact kinetic energy of rock bullets, the absorbed energy of granite and the new surface area. At the same time, the crushing and ejection energy of rock bullets will increase, and the efficiency of the impact kinetic energy of rock bullets into granite crushing will be reduced. The absorbed energy is a power product of the mass and kinetic energy of the rock bullets. Keeping the air pressure constant and increasing the mass of the rock bullets can increase the kinetic energy and absorbed energy conversion efficiency of the rock bullets within a certain range, and enhance the damaging effect. Too much increase in rock mass will result in a decrease in kinetic energy, thereby reducing the conversion efficiency of absorbed energy. The specific surface free energy of rocks with different lithology is different. However, the effects of gas pressure and mass of rock bullets on the impact failure effect of rocks with different lithology are basically the same. The research conclusions of this paper will provide theoretical and technical support for hard rock auxiliary excavation.

Key words

auxiliary tunneling / particle jet / impact rock breaking / hard rock crushing / energy dissipation

Cite this article

Download Citations
LIU Yong1,2, GUO Xinhui1,2, WEI Jianping1,2, ZHANG Hongtu1,2. An experimental study on rock breaking law by rock bullet impacting[J]. Journal of Vibration and Shock, 2023, 42(4): 270-278

References

[1] 刘勇, 李志飞, 魏建平, 等. 磨料空气射流破煤冲蚀模型研究[J]. 煤炭学报, 2020, 45(5): 1733-1742.
LIU Yong, LI Zhifei, WEI Jianping, et al. Erosion model of abrasive air jet used in coal breaking [J]. Journal of China Coal Society, 2020, 45(5): 1733-1742.
[2] 刘勇, 张涛, 魏建平, 等. 磨料属性影响高压磨料气体射流破岩效果的理论及实验研究[J]. 煤炭学报, 2018,43(05): 1335-1342.
LIU Yong, ZHANG Tao, WEI Jianping, et al.Theoretical and experimental study on the effects of abrasive material properties in high pressure abrasive gas jet [J]. Journal of China Coal Society, 2018, 43(05): 1335-1342.
[3] 谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术, 2017,49(02): 1-16.
XIE Heping. Research Framework and Anticipated Results of Deep Rock Mechanics and Mining Theory[J]. Advanced Engineering Sciences, 2017,49(02): 1-16.
[4] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019,44(05):1283-1305.
XIE Heping.Research review of the state key research development program of China: Deep rock mechanics and mining theory [J]. Journal of China Coal Society, 2019,44(05):1283-1305.
[5] 刘志强, 宋朝阳, 程守业, 等. 千米级竖井全断面科学钻进装备与关键技术分析[J]. 煤炭学报, 2020, 45(11): 3645-3656.
LIU Zhiqiang, SONG Chaoyang, CHENG Shouye, et al.Equipment and key technologies for full-section scientifically drilling of kil-ometer-level vertical shafts [J]. Journal of China Coal Society, 2020, 45(11): 3645-3656.
[6] 程桦, 唐彬, 唐永志, 等. 深井巷道全断面硬岩掘进机及其快速施工关键技术[J]. 煤炭学报, 2020, 45(09): 3314-3324.
CHENG Hua, TANG Bin, TANG Yongzhi, et al.Full face tunnel boring machine for deep-buried roadways and its key rapid excava-tion technologies [J]. Journal of China Coal Society, 2020, 45(09): 3314-3324.
[7] Maurer W C. Heilhecke J K, Love W W. High pressure drilling[J]. JPT, 1973, (255) : 960~964
[8] 孙清德, 汪志明, 王超, 等. 水力机械联合破岩主要配合参数的实验研究[J]. 石油钻采工艺, 2006(02): 7-10+81.
SUN Qingde, WANG Zhiming, WANG Chao, et al. Experiment study on work-in parameters of combined high pressure jet and mechanical bit breaking rock [J] Oil Drilling & Production Technology, 2006(02):7-10+81.
[9] 卢义玉, 陆朝晖, 李晓红, 等. 水射流辅助PDC刀具切割岩石的力学分析[J]. 岩土力学, 2008(11): 3037-3040+3046.
LU Yiyu, LU Chaohui, LI Xiaohong, et al. Mechanical analysis of water jets assisting PDC bit to cut rocks [J] Rock and Soil Mechanics, 2008(11):3037-3040+3046.
[10] LIU Yong, WEI Jianping, REN Ting. Analysis of the Stress Wave Effect During Rock Breakage by Pulsating Jets [J]. Rock Mechanics and Rock Engineering, 2016, 49(2):503-514.
[11] 刘勇, 崔家玮, 魏建平, 等. 自激振荡脉冲超临界二氧化碳射流发生机制研究[J/OL]. 煤炭学报: 1-14[2021-12-12]. https://doi.org/10.13225/j.cnki.jccs.2021.1209.
LIU Yong, CUI Jiawei, WEI Jianping, et al. Study on Generating Mechanism of Self-excited Oscillation Pulsed Supercritical Carbon Dioxide Jet [J]. Journal of China Coal Society: 1-14[2021-12-12]. https://doi.org/10.13225/j.cnki. jccs.2021.1209.
[12] 刘勇, 陈长江, 魏建平, 等. 磨料水射流与磨料气体射流破岩压力对比分析[J]. 煤炭学报, 2018, 43(9): 2510-2517.
LIU Yong, CHEN Changjiang, WEI Jianping, et al. Comparison analysis on the rock breakage pressure induced by abrasive water jets and abrasive gas jets [J]. Journal of China Coal Society, 2018,43(9):2510-2517.
[13] 李美艳, 韩彬, 张世一, 等. 岩石表面激光射孔实验研究[J]. 激光杂志, 2015, 36(07): 44-47.
LI Meiyan, HAN Bin, ZHANG Shiyi, et al. Experimental Study of Laser Perforation on the Surface of Sandstone [J]. Laser Journal, 2015,36(07):44-47.
[14] 戴俊, 孟振, 吴丙权. 微波照射对岩石强度的影响研究[J]. 有色金属(选矿部分), 2014(03): 54-57.
DAI Jun, MENG Zhen, WU Bingquan. Study on Impact of Rock Strength by Microwave Irradiation [J]. Nonferrous Metals (Mineral Processing Section), 2014(03):54-57.
[15] 杨晓峰, 李晓红, 卢义玉. 水射流辅助岩石切削过程的刀具热应力分析[J]. 煤炭学报, 2011, 36(01): 152-156.DOI: 10.13225/j.cnki.jccs.2011.01.020.
YANG Xiaofeng, LI Xiaohong, LU Yiyu, Thermal stress analysis of tool in cutting rock with water jet [J]. Journal of China Coal Society, 2011, 36(01): 152-156.DOI: 10.13225/j.cnki.jccs.2011.01.020.
[16] 杨增辉, 易先中, 曹良波, 等. 激光钻井破岩技术及其发展[C]. //成都:2010年钻井基础理论研究与前沿技术开发新进展学术研讨会.2010年钻井基础理论研究与前沿技术开发新进展学术研讨会论文集. 2010: 120-129.
YANG Zenghui, YI Xianzhong, Cao Liangbo, et al. Laser drilling rock breaking technology and its development [C]. //Proceedings of the 2010 Symposium on New Advances in Drilling Fundamental Theory Research and Frontier Technology Development. 2010: 120-129.
[17] TIBBITTS G A, GALLOWAY G G. Particle drilling alters standard rock-cutting approach[J]. World Oil, 2008, 229 (6): 1.
[18] HARTLEY F. Particle drilling technologies completes first phase of test[J]. Offshore, 2008, 68: 30-31.
[19] HARDISTY T. Particle drilling pulverizes hard rocks[J]. The American Oil and Gas Reporter, 2007, 50: 86, 88-89.
[20] 司鹄, 薛永志. 基于SPH算法的脉冲射流破岩应力波效应数值分析[J]. 振动与冲击, 2016, 35(05): 146-152.
SI Hu, XUE Yongzhi. Numerical analysis for stress wave effects of rock broken under pulse jets. [J]. Journal of Vibration and Shock, 2016, 35(05): 146-152.
[21] 米建宇, 黄飞, 李树清, 等. 基于SPH-FEM耦合算法的后混合磨料水射流冲击破岩数值模拟研究[J]. 振动与冲击, 2021, 40(16): 132-139.
MI Jianyu, HUANG Fei, LI Shuqing, et al. Numerical simulation of rock breaking by rear-mixed abrasive water jet based on an SPH-FEM coupling algorithm [J]. Journal of Vibration and Shock, 2021, 40(16): 132-139.
[22] LI Xibing, HONG Liang, YIN Tubing, et al. Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure [J]. Journal of Central South University of Technology, 2008(02):218-223.
[23] 洪亮, 李夕兵, 马春德,等. 岩石动态强度及其应变率灵敏性的尺寸效应研究[J]. 岩石力学与工程学报, 2008, 27(3):8.
HONG Liang, LI Xibing, MA Dechun et al. Study on size effect of rock dynamic strength and strain rate sensitivity[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3):8.
[24] Zhang Z X, Kou S Q, Yu J, et al. Effect of loading rate on rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 597-611.
[25] 陈长江. 高压磨料气体射流破煤应力波传播模型研究[D].焦作:河南理工大学,2019:18-19.
CHEN Changjiang. Study on stress wave propagation model of high pressure abrasive gas jet in coal breaking[D]. Jiaozuo: Henan Polytechnic University, 2019: 18-19.
[26] 吕晓聪, 许金余, 葛洪海, 等. 围压对砂岩动态冲击力学性能的影响[J]. 岩石力学与工程学报, 2010, 29(01): 193-201.
LV Xiaocong, XU Jinyu, GE honghai, et al. Efects of confing pressure on mechanical behaviors of sandstone under dynamic impact loads[J] Chinese Journal of Rock Mechanics and Engineering, 2010, 29(01): 193-201.
PDF(1568 KB)

Accesses

Citation

Detail

Sections
Recommended

/