Dynamic response of deep-water TLP considering pile foundation dislocation

YU Yang1,2, ZHANG Xiaoming1,2, LI Zhenmian1,2, ZHOU Junlong3, CHENG Siyuan1,2, YU Jianxing1,2, YANG Zhenglong1,2

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (5) : 39-46.

PDF(4694 KB)
PDF(4694 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (5) : 39-46.

Dynamic response of deep-water TLP considering pile foundation dislocation

  • YU Yang1,2, ZHANG Xiaoming1,2, LI Zhenmian1,2, ZHOU Junlong3, CHENG Siyuan1,2, YU Jianxing1,2, YANG Zhenglong1,2
Author information +
History +

Abstract

Due to earthquakes, faults, landslides and settlements, the leg foundation under a tension leg platform (TLP) may move. Based on the once-a-year design condition of Liuhua Oilfield in the South China Sea, the time history of the dynamic response of the platform system under 16 cases with the foundation moves down 0.1 meters is calculated. The amplitude and standard deviation of the six DOFs motion as well as the mooring tension in different cases were compared. The results show that the foundational movements have significant impacts on the amplitude of the six DOFs response and tension leg tension, but do not aggravate the fluctuations of these responses; the foundational movements will destroy the original symmetry of the platform system and lead to a greater deterioration in the heave motion; the foundational movements will increase leg tensions significantly and there is a risk of tension leg breakage and mooring failure.

Key words

tension leg platform / foundational movement / coupled model / dynamic response / mooring failure

Cite this article

Download Citations
YU Yang1,2, ZHANG Xiaoming1,2, LI Zhenmian1,2, ZHOU Junlong3, CHENG Siyuan1,2, YU Jianxing1,2, YANG Zhenglong1,2. Dynamic response of deep-water TLP considering pile foundation dislocation[J]. Journal of Vibration and Shock, 2023, 42(5): 39-46

References

[1] J. Yu, Z. Li, Y. Yu, et al. Design and Performance Assessment of Multi-Use Offshore Tension Leg Platform Equipped with an Embedded Wave Energy Converter System[J]. Energies, 2020,13(15):3991.
[2] 吴时国.南海深水地质灾害[M]. 北京:科学出版社,2018.
Wu Shiguo. Deepwater geological disasters in the South China Sea[M]. Beijing: Science Press, 2018.
[3] 谷家扬.张力腿平台复杂动力响应及涡激特性研究[D]. 上海交通大学, 2013.
   Gu Jiayang. Study on the complex dynamic response and vortex-induce motion characteristics of tension leg platform[D]. Shanghai Jiaotong University, 2013.
[4] Manhar R. Dhanak,Nikolaos I. Xiros. Springer handbook of ocean engineering[J]. Journal of Ocean Engineering & Marine Energy, 2017, 3(3): 293-295.
[5] Zeng, X., Shen, X., & Wu, Y. Governing equations and numerical solutions of tension leg platform with finite amplitude motion[J]. Applied Mathematics and Mechanics, 2007, 28(1):37–49.
[6] Zeng X, Liu J, Liu Y, et al. Parametric studies of tension leg platform with large amplitude motions[J]. The Seventeenth International Offshore and Polar Engineering Conference, Lisbon, Portugal , 2007. Vol 1- 4: 202-209.
[7] 徐万海,曾晓辉,吴应湘,刘家悦.深水张力腿平台与系泊系统的耦合动力响应[J]. 振动与冲击, 2009, 28(02):145-150+207.
   Xu W., Zeng X., et al. Coupled dynamic responses of the tension leg platform and tendon in deep water[J]. Journal of Vibration and Shock, 2009, 28(02):145-150+207.
[8] Chandrasekaran S , Jain A K , Chandak N R . SEISMIC ANALYSIS OF OFFSHORE TRIANGULAR TENSION LEG PLATFORMS[J]. International Journal of Structural Stability and Dynamics, 2006, 06(1):97-120.
[9] Wang K , Er G K , Iu V P . Nonlinear random vibrations of moored floating structures under seismic and sea wave excitations[J]. Marine Structures, 2019, 65(MAY):75-93.
[10] 闫功伟,欧进萍.通过附加浮筒改良的张力腿平台多体耦合运动响应[J]. 振动与冲击,2012,31(10):29-35.
    Yan G., Ou J. Coupled motion response of TLP improved by installing additional pontoons[J]. Journal of Vibration and Shock, 2012, 31(10):29-35.
[11] 李焱,唐友刚,王宾,曲晓奇.畸形波作用下二阶波浪载荷对张力腿平台动力响应的影响[J]. 振动与冲击,2018,37(03):167-173.
    Li Y., Tang Y., Wang B., et al. Effects of second order wave load on dynamic response of a TLP under freak waves[J]. Journal of Vibration and Shock, 2018, 37(03):167-173.
[12] 常爽,黄维平,魏东泽,宋虹.二阶波浪力和聚焦位置对畸形波作用下张力腿平台动力响应的影响研究[J].振动与冲击,2020,39(17):254-260.
    Chang S., Huang W., Wei Z., et al. Effects of second-order wave force and focusing location on dynamic response of a tension leg platform under freak wave[J]. Journal of Vibration and Shock, 2020, 39(17):254-260.
[13] Jameel, M., Oyejobi, D.O., Siddiqui, N.A., et al. Nonlinear dynamic response of tension leg platform under environmental loads[J]. KSCE Journal of Civil Engineering, 2017, 21(3):1022-1030.
[14] 沈晓鹏.张力腿平台非线性动力响应与疲劳可靠性研究[D]. 中国科学院研究生院, 2005.
   Shen Xiaopeng. Nonlinear Dynamic Response and Fatigue Reliability of Tension Leg Platform[D]. Chinese Academy of Sciences University, 2005.
[15] 刘洋.张力腿平台有限位移运动研究[D]. 中国科学院研究生院, 2007.
   Liu Yang. Finite displacement response of tension leg platform [D]. Chinese Academy of Sciences University, 2007.
[16] Yu, J., Gao, X., Yu, Y., et al. Dynamic Response Analysis of a Tension Leg Platform with Multiple Broken Tendons[J]. Journal of Tianjin University Science and Technology, 2019, 52(1):40-51.
[17] S. Hao, Y. Yu, J. Yu, et al. Structural response analysis of the hydraulic pneumatic tensioner under its local failure based on a fully coupled TLP-TTR system[J]. Ocean Engineering, 2020, 216:107645.
[18] 成司元,余杨,余建星,郝帅,吴静怡,张春迎,康煜媛.张力腿平台局部系泊失效下复杂运动响应机理研究[J].振动与冲击,2021,40(10):187-195.
   Cheng S., Yu Y., Yu J., et al. Mechanism of the complex motion response of a TLP under tendon failure[J]. Journal of Vibration and Shock, 2021,40(10):187-195.
[19] Cheng S., Yu Y., Yu J., et al. Mechanistic research on the complex motion response of a TLP under tendon breakage[J]. Ocean Engineering,2021, 240.
[20] 余建星,吴静怡,余杨,徐立新,郝帅,成司元.局部系泊失效下的TLP平台鲁棒性评估方法研究[J].天津大学学报(自然科学与工程技术版),2020,53(07):713-724.
   Yu J., Wu J., Yu Y., et al. Approaches for Robustness Evaluation of TLP Under Tendon Damage[J]. Journal of Tianjin University Science and Technology, 2020, 53(07):713-724.
[21] Song, J., Lim, H.-C. Study of floating wind turbine with modified tension leg platform placed in regular waves[J]. Energies, 2019, 12(4), 703.
[22] 李磊,黄维平,梁鹏.基于模型试验的张力腿平台涡激运动特性研究[J]. 振动与冲击,2016,35(23):41-45.
    Li L., Huang W., Liang P. Vortex induced motion characteristics of a tension leg platform based on model tests[J]. Journal of Vibration and Shock, 2016, 35(23):41-45.
[23] Dormand, J. R., & Prince, P. J. A family of embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 1980, 6(1):19-26.
PDF(4694 KB)

Accesses

Citation

Detail

Sections
Recommended

/