Dynamic analysis of the van der Pol-Mathieu equation with fraction-order derivative

GUO Jianbin1,SHEN Yongjun1,2

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (8) : 62-68.

PDF(1291 KB)
PDF(1291 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (8) : 62-68.

Dynamic analysis of the van der Pol-Mathieu equation with fraction-order derivative

  • GUO Jianbin1,SHEN Yongjun1,2
Author information +
History +

Abstract

The dynamics and stability for the primary resonance of the van der Pol-Mathieu equation with fractional-order differential term under harmonic excitation were studied. At first, the approximate analytical solution of the equation was obtained by the averaging method, and the numerical method verified the accuracy of the analytical results. Moreover, the amplitude-frequency equation of the system steady-state response of the was established, and the stability conditions for the steady-state response were obtained through using Lyapunov theory. On this basis, the effects of the parameters of the parametric excitation, self-excitation and fractional-order differential term on the amplitude-frequency characteristics of the system were analyzed. The results show that: The change of the parameter-excited coefficient mainly affects the response amplitude and resonant frequency range of the system. The change of the self-excitation coefficient mainly affects the response amplitude and multi-value property of the system. The change of the coefficient and order of the fractional-order differential term has a double-regulation effect on the dynamic behavior of the system.

Key words

fractional-order derivative / van der Pol-Mathieu equation / averaging method / stability

Cite this article

Download Citations
GUO Jianbin1,SHEN Yongjun1,2. Dynamic analysis of the van der Pol-Mathieu equation with fraction-order derivative[J]. Journal of Vibration and Shock, 2023, 42(8): 62-68

References

[1] CAPUTO M, MAINARDI F. A new dissipation model based on memory mechanism[J]. Pure and Applied Geophysics, 1971, 91(1): 134-147.
[2] OLDHAM KB, SPANIER J. The fractional calculus[M]. New York: Academic Press, 1974.
[3] PODLUBNY I. Fractional differential equations[M]. London: Academic, 1999.
[4] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006.
[5] PETRAS I. Fractional-order nonlinear systems: modeling, analysis and simulation[M]. Beijing: Higher Education Press, 2011.
[6] 林世敏, 许传炬. 分数阶微分方程的理论和数值方法研究[J]. 计算数学, 2016, 38(1): 1-24.
LIN Shi-min, XU Chuan-ju. Theoretical and numerical investigation of fractional differential equations[J]. Mathematica Numerica Sinica, 2016, 38(1): 1-24.
[7] 蔡 伟, 陈 文. 复杂介质中任意阶频率依赖耗散声波的分数阶导数模型[J]. 力学学报, 2016, 48(6): 1265-1280.
CAI Wei, CHEN Wen. Fractional derivative modeling of frequency-dependent dissipative mechanism for wave in complex media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1265-1280.
[8] 李占龙, 孙大刚, 韩斌慧. 基于分数阶导数的黏弹性减振系统时频特性[J]. 应用基础与工程科学学报, 2017, 25(1): 187-198.
LI Zhan-long, SUN Da-gang, HAN Bin-hui. Time and frequency features of viscoelastic vibration damping system based on fractional derivative[J]. Journal of Basic Science and Engineering, 2017, 25(1): 187-198.
[9] SHEN Y J, LI H, YANG S P, et al. Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator[J]. Nonlinear Dynamics, 2020, 102: 1485-1497.
[10] KAI D, KIRYAKOVA V, LUCHKO Y, et al. Trends, directions for further research, and some open problems of fractional calculus[J]. Nonlinear Dynamics, 2022, 107(3): 1-26.
[11] 叶宇旻, 周林根, 谢兴博. 变分数阶振子振动控制方法研究[J]. 振动与冲击, 2015, 34(16): 119-121+134.
YE Yu-min, ZHOU Lin-gen, XIE Xing-bo. Active vibration control method for variable order oscillator[J]. Journal of Vibration and Shock, 2020, 102: 1485-1497.
[12] 石星星, 周星德, 竺启泽, 等. 建筑结构含分数阶振动控制的最优阶次研究[J]. 振动、测试与诊断, 2013, 33(2): 269-272+340.
SHI Xing-xing, ZHOU Xing-de, ZHU Qi-ze, et al. Optimal Order of Fractional-Order Vibration Control of Building Structure[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(2): 269-272+340.
[13] 朱呈祥,邹 云. 分数阶控制研究综述[J].控制与决策, 2009,24(02): 161-169.
ZHU Cheng-xiang, ZOU Yun. Summary of research on fractional-order control[J]. Control and Decision, 2009,24(02): 161-169.
[14] 常宇健, 田沃沃, 金 格. 基于分数阶PIλDμ的非线性分数阶主动控制悬架研究[J]. 燕山大学学报, 2020, 44(6): 575-580.
CHANG Yu-jian, TIAN Wo-wo, JIN Ge. Research on nonlinear fractional active control suspension based on fractional order PIλDμ[J]. Journal of Yanshan University, 2020, 44(6): 575-580.
[15] 侯静玉, 杨绍普, 李强, 等.速度反馈分数阶PID控制对齿轮系统振动特性的影响[J]. 振动与冲击, 2021, 40(23): 175-181.
HOU Jing-yu, YANG Shao-pu, LI Qiang, et al. Effects of speed feedback fractional order PID control on vibration characteristics of gear system[J]. Journal of Vibration and Shock, 2021, 40(23): 175-181.
[16] 游 浩. 磁流变阻尼器的分数阶建模及其在汽车悬架中的应用研究[D]. 石家庄: 石家庄铁道大学, 2017.
[17] 刘晓梅, 徐西鹏, 黄宜坚, 等. 一种磁流变阻尼器的分数阶微分模型[J]. 仪器仪表学报, 2009, 30(12): 2659-2663.
LIU Xiao-mei, XU Xi-peng, HUANG Yi-jian, et al. Fractional differential model of a type of magnetorheological damper[J]. Chinese Journal of Scientific Instrument, 2009, 30(12): 2659-2663.
[18] 付密果, 刘 源, 崔敏亮, 等. 空间飞行器用金属橡胶减振器[J]. 光学精密工程, 2013, 21(5): 1174-1182.
FU Mi-guo, LIU Yuan, CUI Min-liang, et al. Metal-rubber vibration absorber for aerocraft[J]. Optics and Precision Engineering, 2013, 21(5): 1174-1182.
[19] ZHU H, YANG J, ZHANG Y, et al. A novel air spring dynamic model with pneumatic thermodynamics, effective friction and viscoelastic damping[J]. Journal of Sound and Vibration, 2017, 408: 87-104.
[20] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析[J]. 物理学报, 2012, 61(11): 158-163.
SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative[J]. Acta Physica Sinica, 2012, 61(11): 158-163.
[21] LEUNG A Y T, YANG H X, ZHU P. Periodic bifurcation of Duffing-van der Pol oscillators having fractional derivatives and time delay[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 1142-1155.
[22] LEUNG A Y T, YANG H X, GUO Z J. The residue harmonic balance for fractional order van der Pol like oscillators[J]. Journal of Sound and Vibration, 2012, 331(5): 1115-1126.
[23] NIU J C, SHEN Y J, YANG S P, et al. Higher-order approximate steady-state solutions for strongly nonlinear systems by the improved incremental harmonic balance method[J]. Journal of Vibration and Control, 2018, 24(16): 3744-3757.
[24] HOU Y J, YANG S P, LI Q, et al. Analysis of Dynamic Characteristics of a Fractional-Order Spur Gear Pair with Internal and External Excitations[J]. Journal of Computational & Nonlinear Dynamics,2021, 17(2): 021004
[25] 彭 献, 陈自力. 一类强非线性系统共振周期解的渐近分析[J]. 动力学与控制, 2004, 2(1): 46-50.
PENG Xian, CHEN Zi-li. Asymptotic analysis for resonance cycle solution of a type of strongly nonlinear systems[J]. Journal of Dynamics and Control, 2004, 2(1): 46-50.
[26] WARMINSKI J. Nonlinear dynamics of self-, parametric, and externally excited oscillator with time delay: van der Pol versus Rayleigh models[J]. Nonlinear Dynamics, 2019, 99(1): 35-56.
[27] TONDL A. On the interaction between self-excited and parametric vibrations[M]. National Research Institute for Machine Design, Monographs and Memoranda  No. 25, Prague 1978.
[28] 陈予恕, 徐 鉴. Van der pol-Duffing-Mathieu 型系统主参数共振分岔解的普适分类[J]. 中国科学A辑, 1995, 25(12): 1287-1297.
CHEN Yu-shu, XU Jian. Van der Pol type-Duffing-Mathieu system primary parameter resonance bifurcation solution of the general classification[J]. Science in China A, 1995, 25(12): 1287-1297.
[29] 黄建亮, 王 腾, 陈树辉. 含外激励van der Pol-Mathieu方程的非线性动力学特性分析[J]. 力学学报, 2021, 53(2):496-510.
HUANG Jian-liang, WANG Teng, CHEN Shu-hui. Nonlinear dynamic analysis of a van der Pol-Mathieu equation with external excitation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 496-510.
[30] 韦 鹏, 申永军, 杨绍普. 分数阶van der Pol振子的超谐共振[J]. 物理学报, 2014, 63(1): 47-58.
WEI Peng, SHEN Yong-jun, YANG Shao-pu. Super-harmonic resonance of fractional-order van der Pol oscillator. Acta Physica Sinica, 2014, 63(1): 47-58.
[31] 王晓娜, 申永军, 张 娜. 含分数阶微分项的Van del Pol振子的动力学分析[J]. 振动与冲击, 2020, 39(20): 91-96.
WANG Xiao-na, SHEN Yong-jun, ZHANG Na. Dynamical analysis of a Van Del Pol oscillator with fractional-order derivative[J]. Journal of Vibration and Shock, 2020, 39(20): 91-96.
[32] 温少芳. 分数阶参激系统的动力学与控制研究[D]. 石家庄: 石家庄铁道大学, 2018: 22-37.
[33] 郭建斌, 申永军, 李 航. 分数阶拟周期Mathieu方程的动力学分析[J]. 力学学报, 2021, 53(12): 3366-3375.
GUO Jian-bin, SHEN Yong-jun, Li Hang. Dynamic analysis of quasi-periodic mathieu equation with fractional-order derivative[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3366-3375.
PDF(1291 KB)

478

Accesses

0

Citation

Detail

Sections
Recommended

/