Longitudinal nonlinear seismic response of shield tunnel passing through liquefied flow slip zone

LI Xiaoxiong1, ZHUANG Haiyang1,2, WANG Wei1, ZHAO Kai1, CHEN Guoxing1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (1) : 131-137.

PDF(2729 KB)
PDF(2729 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (1) : 131-137.

Longitudinal nonlinear seismic response of shield tunnel passing through liquefied flow slip zone

  • LI Xiaoxiong1, ZHUANG Haiyang1,2, WANG Wei1, ZHAO Kai1, CHEN Guoxing1
Author information +
History +

Abstract

To clarify the seismic performance of the cross-river and cross-sea shield tunnel structure in the liquefied flow slippage area of the site, a 4.8km refined beam-spring shield tunnel model is established based on the generalized response displacement method. The displacement time histories of soil layers under different ground motion intensities in a slightly inclined liquefiable wide river valley site are used as input ground motion states. This paper investigates the effects of site liquefaction flow slippage on the longitudinal seismic response of shield tunnels and the longitudinal opening of adjacent pipe rings. According to the results, the liquefied flow slippage of the site will cause the shield tunnels to produce extremely large longitudinal openings, abrupt changes in section tension and compressive. It fully illustrates the hazard of site flow slippage on the seismic safety of tunnel structures. The severe damage locations of the shield tunnel are located on the sliding surface of the liquefied soil layer. The bending moment variation curves and the acceleration amplification coefficient curves along the axis are consistent with the river valley topography, and the curves show obvious abrupt changes in the liquefaction zone.

Key words

shield tunnel / generalized response displacement method / liquefied flow slippage / opening value between ring intersegment / seismic response

Cite this article

Download Citations
LI Xiaoxiong1, ZHUANG Haiyang1,2, WANG Wei1, ZHAO Kai1, CHEN Guoxing1. Longitudinal nonlinear seismic response of shield tunnel passing through liquefied flow slip zone[J]. Journal of Vibration and Shock, 2024, 43(1): 131-137

References

[1] PAN H S, TONG L Y, WANG Z S, et al. Effects of Soil-Cement Mixing Wall Construction on Adjacent Shield Tunnel Linings in Soft Soil[J]. Arabian Journal for Science and Engineering, 2022, 9: 06705. [2] 赵凯, 卢艺静, 王彦臻, 等. 海底盾构隧道结构端部效应及抗减震措施研究[J]. 振动与冲击, 2022, 41(16): 33-42. ZHAO Kai, LU Yijing, WANG Yanzhen, et al. Investigations on the spatial end effect of a subsea shield tunnel and the aseismic measures[J]. Journal of Vibration and Shock, 2022, 41(16): 33-42. [3] 郭翔宇, 耿萍, 丁梯, 等. 逆断层黏滑作用下隧道力学行为研究[J]. 振动与冲击, 2021, 40(17): 249-258. GUO Xiangyu, GENG Ping, DING Ti, et al. Mechanical behavior of tunnel under stick-slip action of reverse fault[J]. Journal of Vibration and Shock, 2021, 40(17): 249-258. [4] ZHUANG H Y, WANG R, CHEN G X, et al. Shear modulus reduction of saturated sand under large liquefaction-induced deformation in cyclic torsional shear tests[J]. Engineering Geology, 2018, 240: 110-122. [5] 朱伟, 高玉峰, 钟小春. 盾构隧道抗震设计问题探讨[C]. 土动力学与岩土地震工程. 北京: 中国建筑工业出版社, 2002: 510-517. ZHU Wei, GAO Yufeng, ZHONG Xiaochun. Exploring seismic design issues for shield tunnels[C]. Soil dynamics and geotechnical earthquake engineering. Beijing: China architecture & building press, 2002: 510-517. [6] YANG J, ZHUANG H Y, WANG W, et al. Seismic performance and effective isolation of a large multilayered underground subway station[J]. Soil Dynamics and Earthquake Engineering, 2021, 142: 106560. [7] Chen R R, Taiebat M, Wang R, et al. Effects of layered liquefiable deposits on the seismic response of an underground structure[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 124–135. [8] 刘晶波,王东洋,谭辉, 等.隧道纵向地震反应分析的反应位移法对比[J].振动与冲击,2019,38(21):104-111+132. LIU Jingbo, WAGN Dongyang, TAN Hui, et al. Response displacement methods for longitudinal seismic response analysis of tunnel structures[J]. Journal of Vibration and Shock, 2019,38(21):104-111+132. [9] 闫高明,赵伯明,高波等.穿越断层分段柔性接头隧道纵向地震响应解析解[J].振动与冲击,2022,41(13):228-238. YAN Gaoming, ZHAO Boming, GAO Bo, et al. Analytical solution to longitudinal seismic response of fault-crossing tunnel with segmented flexible joints[J]. Journal of Vibration and Shock, ,2022,41(13):228-238. [10] 陈国兴, 孙瑞瑞, 赵丁凤, 等. 海底盾构隧道纵向地震反应特征的子模型分析[J]. 岩土工程学报, 2019, 41(11): 1983-1991. CHEN Guoxing, SUN Ruirui, ZHAO Dingfeng, et al. Longitudinal seismic response characteristic analysis of seabed shield tunnel based on submodeling technique[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1983-1991. [11] 苗雨, 陈超, 阮滨, 等. 基于广义反应位移法的过江盾构隧道纵向地震反应分析[J]. 北京工业大学学报, 2018, 44(03): 344-350. MIAO Yu, CHEN Chao, RUAN Bin, et al. Crossing-river Shield Tunnel Longitudinal Seismic Response Analysis Based on Generalized Displacement Method[J]. Journal of Beijing University of Technology, 2018, 44(03): 344-350. [12] CHEN G X, RUAN B, ZHAO K, et al. Nonlinear Response Characteristics of Undersea Shield Tunnel Subjected to Strong Earthquake Motions[J]. Journal of Earthquake Engineering, 2020, 24(03): 351-380. [13] M Y, YAO R L, RUAN B, et al. Seismic response of shield tunnel subjected to spatially varying earthquake ground motions[J]. Tunnelling and Underground Space Technology, 2018, 77: 216-226. [14] WANG Z H, SAITO Y, HORI K, et al. Yangtze offshore, China: Highly laminated sediments from the transition zone between subaqueous delta and the continental shelf[J]. Estuarine Coastal and Shelf Science, 2005, 62(1-2): 161-168. [15] ZHUANG H Y, YANG J, CHEN S, et al. Liquefaction performance and deformation of slightly sloping site in floodplains of the lower reaches of Yangtze River[J]. Ocean Engineering, 2020, 217(11): 107869. [16] 王程. 越江综合管廊大直径盾构隧道地震响应分析[D]. 南京: 南京工业大学, 2021. WANG CHENG. Analysis of seismic response of large-diameter shield tunnel in cross-river comprehensive pipe gallery[D]. Nanjing: Nanjing Tech University, 2021. [17] ZHUANG H Y, YANG J, CHEN S, et al. Seismic performance of underground subway station structure considering connection modes and diaphragm wall[J]. Soil Dynamics and Earthquake Engineering, 2019, 127: 105842. [18]孟令媛, 史保平. 应用动态复合震源模型模拟汶川Mw7.9地震强地面运动[J]. 地球物理学报, 2011, 54(04): 1010-1027. MENG Lingyuan, SHI Baoping. Near-fault strong ground motion simulation of the May 12, 2008, Mw7.9 Wenchuan Earthquake by dynamic composite source model[J]. Chinese Journal of Geophysics, 2011, 54(04): 1010-1027. [19] 陈涛. 基于Timoshenko梁的隧道纵向地震响应及减震机理研究[D]. 西南交通大学, 2017. CHEN Tao. Longitudinal seismic response and shock absorption mechanism analysis for tunnels based on Timoshenko beam model[D]. Southwest Jiaotong University, 2017. [20] 禹海涛, 吴胤翔, 涂新斌, 等. 盾构隧道纵向地震响应的多尺度分析方法[J]. 中国公路学报, 2020, 33(01): 138-144+152. YU Haitao, WU Yinxiang, TU Xinbin, et al. Multi-scale method for longitudinal seismic response analysis of shield tunnels[J]. China J. Highw. Transp., 2020, 33(01): 138-144+152. [21] 陈国兴, 卢艺静, 王彦臻, 等. 海底盾构隧道–竖井连接部位三维非线性地震反应特性[J]. 岩土工程学报, 2021, 43(08): 1382-1390. CHEN Guoxing, LU YIjing, WANG Yanzhen, et al. 3D nonlinear seismic response characteristics for the junction of undersea shield tunnel-shaft[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(08): 1382-1390. [22] 王维, 何川, 耿萍, 等. 非均匀地层盾构隧道纵向抗震分析[J]. 现代隧道技术, 2016, 53(06): 73-79. WANG Wei, HE Chuan, GENG Ping, et al. Longitudinal Aseismic Analysis of Shield Tunnels in Inhomogeneous Ground[J]. Modern Tunnelling Technology, 2016, 53(06): 73-79.
PDF(2729 KB)

Accesses

Citation

Detail

Sections
Recommended

/