Nonlinear energy sink for vibration reduction of a beam on finite depth medium based on Winkler foundation

LIU Zongtong1, MA Jianjun1,2, GUO Ying1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (1) : 237-245.

PDF(1632 KB)
PDF(1632 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (1) : 237-245.

Nonlinear energy sink for vibration reduction of a beam on finite depth medium based on Winkler foundation

  • LIU Zongtong1, MA Jianjun1,2, GUO Ying1
Author information +
History +

Abstract

The effect of soil-structure interaction on structural dynamics is a nonlinear energy sink. Using Winkler foundation beam theory considering soil mass, the limited depth elastic medium is equivalent to the additional mass of the nonlinear energy sink system. The nonlinear dynamic model of the supported beam system on the elastic medium under harmonic excitation is established. The Galerkin and incremental harmonic balance method analyze the nonlinear dynamic response of a supported beam on the elastic medium. The correctness of the theoretical results is verified by numerical calculation, and the effectiveness of the nonlinear energy sink is analyzed. The vibration reduction effect of the elastic medium in different parameter ranges is revealed through parameter optimization and analysis, and the optimal parameter range is discussed. The results show that the elastic medium has an excellent inhibitory effect on the dynamic response of the supporting beam within a reasonable parameter range. It can quickly and effectively absorb the vibration energy under resonance conditions and has good robustness. The optimized nonlinear energy sink can reduce the resonance amplitude of the beam by more than 95% and has a wide vibration reduction frequency band. The research results show the vibration reduction mechanism of soil-structure interaction from a nonlinear energy sink perspective and provide a theoretical basis for structural vibration suppression based on the elastic foundation design.

Key words

soil-structure interaction / theory of beam on Winkler foundation / nonlinear energy sink;

Cite this article

Download Citations
LIU Zongtong1, MA Jianjun1,2, GUO Ying1. Nonlinear energy sink for vibration reduction of a beam on finite depth medium based on Winkler foundation[J]. Journal of Vibration and Shock, 2024, 43(1): 237-245

References

[1] YAO J T. Concept of structural control [J]. Journal of the structural Division, 1972, 98(7): 1567-1574. [2] 张大鹏, 吴栋, 雷勇军. 黏弹性基体中挠曲电Timoshenko纳米梁振动特性分析[J].国防科技大学学报, 2021, 43(6):8-16. ZHANG Dapeng, WU Dong, LEI Yongjun. Vibration characte-ristics analysis of flexoelectric Timoshenko nano-beam in visc-oelastic medium [J].Journal of National University of Defense Technology, 2021, 43(6): 8-16. [3] 余松, 黄可凡, 蒋建平. 飞轮微振动的准零刚度多向隔振方法[J]. 振动与冲击, 2022, 41(2): 123-129. YU Song, HUANG Kefan, JIANG Jianping. Quasi-zero-stiffen-ss multi-direction isolation method for the micro-vibration isol-ation of flywheels [J]. Journal Vibration and Shock, 2022, 41(2): 123-129. [4] 王雨楠, 刘昆. 基于变步长LMS方法的磁悬浮飞轮振动抑制[J]. 动力学与控制学报, 2022, 20(3): 77-82. WANG Yunan, LIU Kun. Vibration suppression of magnetic l-evitation flywheel based on variable step size LMS method [J]. Journal of Dynamics and Control, 2022, 20(3): 77-82. [5] WONG H L, LUCO J E. Dynamic response of rigid fou-ndations of arbitrary shape [J]. Earthquake Engineering and S-tructural Dynamics, 1976, 4(6): 579-587. [6] LITTLE R R, SCAVUZZO R J. Vertical soil-structure int-eraction of nuclear power plants subjected to seismic excitati-on [J]. Nuclear Engineering and Design, 1973, 24(2): 203-213. [7] 吕西林, 陈跃庆, 陈波等. 结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动, 2000,20(4):20-29. LÜ Xilin, CHEN Yueqing, CHEN Bo, et al. Shaking table te-sting of dynamic soil-structure interaction system [J]. Earthqu-ake Engineering and Engineering Vibration, 2000, 20(4):20-29. [8] 蒋建国, 周绪红, 邹银生等. 土-结构动力相互作用研究的发展历程及展望[J]. 岩土工程界, 2001, 4(6): 47-49. JIANG Jianguo, ZHOU Xuhong, ZOU Yinsheng, et al. Devel-opment and prospect of soil-structure dynamic interaction [J]. Geotechnical Engineering World, 2001, 4(6): 47-49. [9] 陈兴国, 王志华, 宰金珉. 考虑土与结构相互作用效应的结构减震控制大型振动台模型试验研究[J].地震工程与工程振动, 2001, 21(4): 117-127. CHEN Xingguo, WANG Zhihua, ZAI Jinmin. Shaking table model testing of structure suppressing vibration control includ-eing soil-structure interaction effects [J]. Earthquake Engineeri-ng and Engineering Vibration, 2001, 21(4): 117-127. [10] ANAND V, SATISH KUMAR S R. Seismic soil-structure interaction: A State-of-the-Art Review [J]. Structures, 2018, 16: 317-326. [11] BAO T, LIU Z. Evaluation of Winkler model and Pasternak model for dynamic soil-structure interaction analysis of structures partially embedded in soils [J]. International Journal of Geomechanics, 2020, 20 (2): 04019167. [12] 王家乐, 夏桂云. Winkler地基上修正Timoshenko梁振动分析[J]. 振动与冲击, 2020, 39(3): 30-37. WANG Jiale, XIA Guiyun. Vibration analysis for a modified Timoshenko beam on Winkler elastic foundation [J]. Journal of Vibration and Shock, 2020, 39(3): 30-37. [13] NGUYEN T, PHAM D, HOANG P. A new foundation model for dynamic analysis of beams on nonlinear foundation subjected to a moving mass [J]. Procedia Engineering, 2016, 142: 166-173. [14] 楼梦麟, 沈霞. 弹性地基梁振动特性的近似分析方法[J].应用力学学报, 2004, 21(3): 149-152+170. LOU Menglin, SHEN Xia. An approach for analyzing dynamic characteristic of Reinforced Concrete beam on elastic foundation [J]. Chinese Journal of Applied Mechanics, 2004, 21(3): 149-152+170. [15] 马建军, 刘齐建, 王连华, 等. Winkler地基上有限长梁非线性自由振动[J]. 工程力学, 2012, 29(8): 58-62. MA Jianjun, LIU Qijian, WANG Lianhua, et al. Nonlinear free vibration of finite-length beams on the Winkler foundation [J]. Engineering Mechanics, 2012, 29(8): 58-62. [16] 马建军, 聂梦强, 高笑娟, 等. 考虑土体质量的Winkler地基梁非线性自由振动分析[J].工程力学, 2018,(S1): 150-155. MA Jianjun, NIE Mengqiang, GAO Xiaojuan, et al. Nonlinear free vibration of a beam on Winkler foundation with a consideration of soil mass effect [J]. Engineering Mechanics, 2018, 35(S1): 150-155. [17] VAKAKIS A F. Inducing passive nonlinear energy sinks in vibrating systems [J]. Journal of Vibration and Acoustics, 2001, 123(3): 324-332. [18] 鲁正, 王自欣, 吕西林. 非线性能量阱技术研究综述[J]. 振动与冲击, 2020, 39(4): 1-16+26. LU Zheng, WANG Zixin, LÜ Xilin. A review on nonlinear e-nergy sink technology [J]. Journal Vibration and Shock, 2020,39(4): 1-16+26. [19] KERSCHEN G, LEE Y, VAKAKIS A F, et al. Irreversi-ble passive energy transfer in coupled oscillators with essential nonlinearity [J]. SIAM Journal on Applied Mathematics, 2005, 66(2): 648-679. [20] 陆泽琦, 陈立群. 非线性被动隔振的若干进展[J]. 力学学报, 2017, 49(3): 550-564. LU Zeqi, CHEN Liqun. Some recent progresses in nonlinear passive isolatins of vibrations [J].Chinese Journal of Theoretic-al and Applied Mechanics, 2017, 49(3): 550-564. [21] 杨涛, 周生喜, 曹庆杰等. 非线性振动能量俘获技术的若干进展[J]. 力学学报, 2021, 53(11): 2894-2909. YANG Tao, ZHOU Shengxi, CAO Qingjie, et al. Some Adva-nces in nonlinear vibration energy harvesting Technology [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909. [22] VAKAKIS A F, GENDELMAN O V, BERGMAN L A, et al. Nonlinear targeted energy transfer in mechanical and st-ructuralsystems [M]. New York: Springer-Verlag, 2008. [23] GOURDON E, ALEXANDER N A, TAYLOY C A, et al. Nonlinear energy pumping under transient forcing with str-ongly nonlinear coupling: Theoretical and experimental results [J]. Journal of Sound and Vibration, 2007, 300(3/4/5):522-551. [24] 时成龙, 张纪刚, 程赟. 非线性能量阱减振的研究进展[J].地震工程与工程振动, 2021, 41(2): 162-174. SHI Chenglong, ZHANG Jigang, CHENG Yun. Research pro-gress on nonlinear energy sink vibration reduction [J]. Earthq-uake Engineering and Engineering Vibration, 2021, 41(2): 162-174. [25] TIAN W, Li Y, YANG Z, et al. Suppression of nonline-ar aeroelastic responses for a cantilevered trapezoidal plate in hypersonic airflow using an energy harvester enhanced nonlin-ear energy sink [J]. International Journal of Mechanical Scien-ces, 2020, 172: 105417. [26] 范舒铜,申永军. 简谐激励下黏弹性非线性能量阱的研究[J]. 力学学报, 2022, 54(9): 2567-2576. FAN Shutong, SHEN Yongjun. Research on a viscoelastic no-nlinear energy sink under harmonic excitation [J]. Chinese Jo-urnal of Theoretical and Applied Mechanics, 2022, 54(9): 2567-2576. [27] 张登博, 唐有绮, 陈立群. 非齐次边界条件下轴向运动梁的非线性振动[J]. 力学学报, 2019, 51(1): 218-227. ZHANG Dengbo, TANG Youqi, CHEN Liqun. Nonlinear vibr-ation of axially moving beams with nonhomogeneous boundar-y conditions [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 218-227. [28] Zhao Y, Du J. Nonlinear vibration analysis of a generall-y restrained double-beam structure coupled via an elastic con-nector of cubic nonlinearity [J]. Nonlinear Dynamics, 2022, 109: 563-588. [29] ZHANG Z,GAO Z T, FANG B, et al. Vibration supper-ssion of a geometrically nonlinear beam with boundary inertialnonlinear energy sinks [J]. Nonlinear Dynamics, 2022, 109: 1259-1275. [30] Gendelmana O V, Gorlovb D V, Manevitchc L I, et al. Dynamics of coupled linear and essentially nonlinear oscillato-rs with substantially different masses[J]. Journal of Sound andVibration,2005,286:95-109. [31] Georgiades F, Vakakis A F. Dynamics of a linear beam with an attached local nonlinear energy sink[J]. Communicati-ons in Nonlinear Science and Numerical Simulation,2007,12:643-654. [32] ZHANG Y W, HOU S, XU K F, et al. Forced vibrationcontrol of an axially moving beam with an attached nonlinearenergy sink [J]. Acta Mechanica Solida Sinica, 2017, 30: 674-682. [33] 赵小颖, 李彪, 丁虎, 等.中间约束轴向运动梁横向非线性振动[J]. 振动与冲击, 2019,38(5): 142-145+168. ZHAO Xiaoying, LI Biao, DING Hu, et al. Nonlinear transv-erse vibration of an axially moving beam with an intermediatespring constraint [J]. Journal Vibration and Shock, 2019, 38(5): 142-145+168. [34] 马建军, 秦紫果, 刘丰军, 等. 考虑有限深度土体运动的Winkler地基梁自由振动分析[J]. 振动与冲击, 2019, 38(6): 62-66+99. MA Jianjun, QIN Ziguo, LIU Fengjun, et al. Free vibration of beams on Winkler foundation with the consideration of fin-ite-depth soil motion [J]. Journal Vibration and Shock, 2019, 38(6): 62-66+99. [35] 姜忻良,吴薪柳.复杂结构-桩-土体系下的桩-土动力p-y曲线[J].岩土工程学报,2012,34(05):911-916. JIANG Xinliang, WU Xinliu, Dynamic p-y curves of pile-soilunder complex structure-pile-soil system [J]. Chinese Journal of Geotechnical Engineering,2012,34(05):911-916.
PDF(1632 KB)

Accesses

Citation

Detail

Sections
Recommended

/