Noise reduction method for blasting vibration signals based on improved EMD-wavelet packet

YAN Peng1, ZHANG Yunpeng1,2, HOU Shanying1, ZHANG Weiwei3, YANG Xi1,2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (11) : 264-271.

PDF(3045 KB)
PDF(3045 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (11) : 264-271.

Noise reduction method for blasting vibration signals based on improved EMD-wavelet packet

  • YAN Peng1, ZHANG Yunpeng1,2, HOU Shanying1, ZHANG Weiwei3, YANG Xi1,2
Author information +
History +

Abstract

Aiming at the problems of mode aliasing and poor signal noise reduction effect in empirical mode decomposition (EMD), according to the idea of decomposition-orthogonal-clustering-noise reduction-reconstruction, a blasting vibration signal noise reduction method based on improved EMD-wavelet packet was proposed. The method combined the orthogonality of kernel principal component analysis (KPCA), the clustering property of K-means algorithm and the noise reduction advantage of wavelet packet. This method could not only eliminate the modal aliasing of EMD, but also had a good noise reduction effect. The results show that compared with CEEMDAN and EMD methods, the improved EMD- wavelet packet method has the highest signal to noise ratio (7.9dB) and the lowest root mean square error (RMSE) in analog signal simulation test. In the noise reduction of the measured blasting vibration signal, the correlation coefficient between the original signal and the signal after noise reduction by improved EMD- wavelet packet method is maximum 0.91. The improved EMD-wavelet packet and CEEMDAN methods have better performance, improved EMD-wavelet packet has the best performance in preserving low frequency vibration signals at 10−60 Hz, the best filtering effect on medium and high frequency noise above 60 Hz.

Key words

blasting vibration signal / empirical mode decomposition(EMD) / kernel principal component analysis(KPCA) / K-means algorithm / wavelet packet / noise reduction

Cite this article

Download Citations
YAN Peng1, ZHANG Yunpeng1,2, HOU Shanying1, ZHANG Weiwei3, YANG Xi1,2. Noise reduction method for blasting vibration signals based on improved EMD-wavelet packet[J]. Journal of Vibration and Shock, 2024, 43(11): 264-271

References

[1] 付晓强, 俞缙. 隧道爆破信号交叉项抑制及雷管延期时间研究[J]. 中国安全科学学报, 2021, 31(12): 53-61. FU X Q, YU J. Study on cross terms suppression of tunnel blasting vibration signals and time of detonator delay [J]. China Safety Science Journal, 2021, 31(12):53-61. [2] 付晓强, 杨仁树, 刘纪峰, 等. 冻结立井爆破近区井壁振动信号基线漂移校正和消噪方法[J]. 爆炸与冲击, 2020, 40(09):100-112. FU X Q, YANG R S, LIU J F, et al. Baseline drift correction and de-noising method of shaft lining vibration signal in near field of freezing vertical shaft blasting [J]. Explosion and shock waves, 2020, 40(09):100-112. [3] 谢全民, 龙源, 钟明寿, 等. SGWT在爆破振动信号信噪分离中的应用研究[J].振动与冲击, 2012, 31(01): 24-28+43. XIE Q M, LONG Y, ZHONG M T, et al. Application of SGWT in separation of noises from a blast vibration signal [J]. Journal of Vibration and Shock, 2012, 31(1): 24-28. [4] 王海龙, 赵岩, 王海军, 等. 基于CEEMDAN-小波包分析的隧道爆破信号去噪方法[J]. 爆炸与冲击, 2021, 41(05): 125-137. WANG H L, ZHAO Y, WANG H J, et al. De-noising method of tunnel blasting signal based on CEEMDAN decomposition-wavelet packet analysis [J]. Explosion and Shock Waves, 2020, 40(8): 1-15. [5] MOU Z L, NIU X B, WANG C. A precise feature extraction method for shock wave signal with improved CEEMD HHT [J]. Journal of Ambient Intelligence and Humanized Computing, 2020(3): 1-12. [6] LIU X H, SHI G F, LIU W H. An improved empirical mode decomposition method for vibration signal [J]. Wireless Communications and Mobile Computing, 2021(2021): 1-8. [7] ZHANG J Y, JIANG R C, LI B, et al. An automatic recognition method of microseismic signals based on EEMD-SVD and ELM [J]. Computers and Geosciences, 2019(133): 1-11. [8] 郑近德, 应万明, 潘海洋, 等. 基于改进全息希尔伯特谱分析的旋转机械故障诊断方法[J]. 机械工程学报, 2022, 58. ZHENG J D, YING W M, PAN H Y, et al. Improved holo-hilbert spectrum analysis-based fault diagnosis method for rotating machines[J]. Journal of Mechanical Engineering, 2022, 58. [9] 杨兵, 杨志强, 田镇, 等. 联合EMD-HD和小波分解的GNSS坐标时间序列降噪分析[J]. 测绘学报, 2022, 51(09):1881-1889. YANG B, YANG Z Q, TIAN Z, et al. Denoising analysis of UNSS coordinate time wavelet decomposition seraes by combining EMD-HD and wavelet decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(09):1881-1889. [10] 吴蔚, 赵博, 薛翔, 等. 离心压气机不稳定流动的时频特征分析[J]. 航空动力学报, 2020, 35(08):1768-1776. WU W, ZHAO B, XUE X, et al. Time-frequency analysis of unsteady flow in centrifugal compressor[J]. Journal of Aerospace Power, 2020, 35(08):1768-1776. [11] 赵伟, 肖世校, 张保灿, 等. 基于形态分量分析和集合经验模态分解的心电信号工频干扰消除法[J]. 生物医学工程学杂志, 2015, 32(6): 1179-1184. ZHAO W, XIAO S X, ZHANG B C, et al. Power frequency interference cancellation of ECG signal based on morphological component analysis and set empirical mode decomposition [J]. Journal of Biomedical Engineering, 2015, 32(6): 1179-1184. [12] 周涛涛, 朱显明, 彭伟才, 等. 基于CEEMD和排列熵的故障数据小波阈值降噪方法[J]. 振动与冲击, 2015, 34(23): 207-211. ZHOU T T, ZHU X M, PENG W C, et al. A wavelet threshold denoising method for fault data based on CEEMD and permutation entropy [J]. Journal of Vibration and Shock, 2015, 34(23): 207-211. [13] 李晓斌. HHT中EMD方法正交性的研究[D]. 昆明: 昆明理工大学, 2010: 27-37. [14] 肖瑛, 殷福亮. 解相关EMD: 消除模态混叠的新方法[J]. 振动与冲击, 2015, 34(04):25-29. XIAO Y, YIN F L. Decorrelation EMD: a new method of eliminating mode mixing[J]. Journal of Vibration and Shock, 2015, 34(04):25-29. [15] 易文华, 刘连生, 闫雷, 等. 基于EMD改进算法的爆破振动信号去噪[J]. 爆炸与冲击, 2020, 40(09): 77-87. YI W H, LIU L S, YAN L, et al. Study on vibration signal de-noising based on EMD improved algorithm [J]. Explosion and Shock Waves, 2020, 40( 9): 75-85. [16] SHEN J X, XU F Y. Method of fault feature selection and fusion based on poll mode and optimized weighted KPCA for bearings[J]. Measurement, 2022, 194. [17] HAN Y M, SONG G L, LIU F F, et al. Fault monitoring using novel adaptive kernel principal component analysis integrating grey relational analysis [J]. Process safety and environmental protection, 2022, (157): 397-410. [18] 王惠琴, 侯文斌, 彭清斌, 等. 基于K均值聚类的SPPM分步分类检测算法[J]. 通信学报, 2022, 43(01): 161-171. WANG H Q, HOU W B, PENG Q B, et al. Step-by-step classification detection algorithm of SPPM based on K-means clustering [J]. Journal on Communications, 2022, 43(01): 161-171. [19] 李玥, 穆维松, 褚晓泉, 等. 基于改进量子粒子群的K-means聚类算法及其应用[J] .控制与决策, 2022, 37(04): 839-850. LI Y, MU W S, CHU X Q, et al. K-means clustering algorithm based on improved quantum particle swarmoptimization and its application [J]. Control and Decision, 2022, 37(04): 839-850. [20] YI W H, YAN L, WANG Z H, et al. Geotechnical engineering blasting: a new modal aliasing cancellation methodology of vibration signal de-noising [J]. Earthquake Engineering and Engineering Vibration, 2022, 21(02): 313-323. [21] 张艳博, 杨震, 姚旭龙, 等. 花岗岩巷道岩爆声发射信号及破裂特征实验研究[J]. 煤炭学报, 2018, 43(1): 95-104. ZHANG Y B, YANG Z, YAO X L, et al. Experimental study on rockburst acoustic emission signal and fracture characteristics in granite roadway [J]. Journal of China Coal Society, 2018, 43(1): 95-104. [22] YANG E, GE S R, WANG S B . Characterization and identification of coal and carbonaceous shale using visible and near-infrared reflectance spectroscopy [J]. Journal of Spectroscopy, 2018(2018): 1-14. [23] MENG X G, JIA H, TIAN W X, et al. Compression method of NMR echo data obtained from complex pore structure formation [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19. [24] 谷伟伟. 分组主成分和核主成分的研究与应用[D]. 徐州: 中国矿业大学, 2014. [25] 闫学东, 郭浩楠, 李永昌, 等. 基于顺风车数据和聚类方法的都市圈区域划分与层级结构研究[J]. 交通运输系统工程与信息, 2021, 21(04): 30-39. YAN X D, GUO H N, LI Y C, et al. Regional division and hierarchical structure of metropolitan area based on carpooling data and clustering method [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(04): 30-39. [26] 赵国彦, 邓青林, 马举. 基于FSWT时频分析的矿山微震信号分析与识别[J]. 岩土工程学报, 2015, 37(02): 306-312. ZHAO G Y, DENG L Q, MA J. Recognition of mine microseismic signals based on FSWT time-frequency analysis[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(02): 306-312. [27] 中华人民共和国国家标准编写组. GB6722-2014 爆破安全规程[S]. 北京: 中国标准出版社, 2015.
PDF(3045 KB)

Accesses

Citation

Detail

Sections
Recommended

/