Terminal sliding mode control for multi-mode switching of composite air suspension

KOU Farong1, YANG Xudong2, LI Shenglin2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (11) : 83-93.

PDF(3801 KB)
PDF(3801 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (11) : 83-93.

Terminal sliding mode control for multi-mode switching of composite air suspension

  • KOU Farong1, YANG Xudong2, LI Shenglin2
Author information +
History +

Abstract

Aiming at the problem of difficult coordination between body height and suspension damping under complex operating conditions of vehicle air suspension system, a multi-mode switching terminal sliding mode control strategy for composite air suspension was proposed. Considering the effects of suspension system nonlinearity and external disturbances, a nonlinear dynamics model of composite air suspension was established. A multi-mode switching controller was designed to determine the optimal damping control mode under different body heights. An unknown input observer was used to estimate the suspension system state quantity, and a non-singular fast terminal sliding mode controller based on radial basis neural network was designed to control the linear motor output under the corresponding mode of electromagnetic. Finally, the dynamic performance of the suspension under the multi-mode switching terminal sliding mode control strategy was simulated and tested on the bench. The simulation results show that the control strategy can effectively coordinate the body height and suspension damping, and improve the smoothness and stability of the vehicle under complex working conditions. The test results show that compared with the passive suspension, the acceleration of the reed mass of the system is reduced by 32.5% and 33.7% in the time domain and frequency domain respectively, which verifies the effectiveness of the control strategy.

Key words

composite air suspension / multi-mode switching / unknown input observer / radial basis neural network / non-singular fast terminal sliding mode control

Cite this article

Download Citations
KOU Farong1, YANG Xudong2, LI Shenglin2. Terminal sliding mode control for multi-mode switching of composite air suspension[J]. Journal of Vibration and Shock, 2024, 43(11): 83-93

References

[1] ZHOU Y, LI Z, YU W, et al. Cooperative control of interconnected air suspension based on model predictive control[J]. Applied Sciences, 2022, 12(19): 9886. [2] XU X, LIU H, JIANG X, et al. Uncertainty analysis and optimization of quasi-zero stiffness air suspension based on polynomial chaos method[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 1-19. [3] CAO K, LI Z, GU Y, et al. The control design of transverse interconnected electronic control air suspension based on seeker optimization algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(8): 2200-2211. [4] 汪少华,翟旭辉,孙晓强,等. 车辆刚度阻尼多级可调式油气悬架系统分析及控制研究[J]. 振动与冲击,2022,41(12):168-177. WANG Shaohua, ZHAI Xuhui, SUN Xiaoqiang, et al. Analysis and control of a vehicle hydro pneumatic suspension system with multistage adjustable stiffness and damping characteristics[J]. Journal of Vibration and Shock, 2022, 41(12): 168-177. [5] ZHANG B, LIU M, WANG K, et al. Takagi–Sugeno fuzzy model-Based control for semi-Active cab suspension equipped with an electromagnetic damper and an air spring[J]. Machines, 2023, 11(2): 226. [6] ZHOU R, ZHANG B, LI Z. Dynamic modeling and computer simulation analysis of the air spring suspension[J]. Journal of Mechanical Science and Technology, 2022, 36(4): 1719-1727. [7] 胡启国,魏晨,陆伟,等. 空气悬架混杂系统车身高度与可调阻尼分层控制[J]. 郑州大学学报(工学版),2023,44(3):94-101. HU Qiguo, WEI Chen, LU Wei, et al. Hierarchical control of body height and adjustable damping in air suspension hybrid system[J]. Journal of Zhengzhou University(Engineering Science), 2023, 44(3): 94-101. [8] 孙维超,张晋华,潘惠惠. 兼顾平顺性与车高调节的重型车空气悬架控制[J]. 控制理论与应用,2022,39(6):1002-1010. SUN Weichao, ZHANG Jinhua, PAN Huihui. Heavy vehicle air suspension control considering ride comfort and height regulation[J]. Control Theory & Applications, 2022, 39(6): 1002-1010. [9] 孙晓强,陈龙,汪少华,等. 半主动空气悬架阻尼多模型自适应控制研究[J]. 农业机械学报,2015,46(3):351-357. SUN Xiaoqiang, CHEN Long, WANG Shaohua, et al. Research on Damping Multi-model Adaptive Control of Semi-active Air Suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 351-357. [10] 庞辉,梁军,王建平,等. 考虑系统不确定性的车辆主动悬架自适应模糊滑模控制[J]. 振动与冲击,2018,37(15):261-269. PANG Hui, LIANG Jun, WANG Jianping, et al. Adaptive fuzzy sliding mode control for vehicle active suspension systems considering system uncertainty[J]. Journal of Vibration and Shock, 2018, 37(15): 261-269. [11] 李以农,朱哲葳,郑玲,等. 基于路面识别的主动馈能悬架多目标控制与优化[J]. 交通运输工程学报,2021,21(2):129-137. LI Yinong, ZHU Zhewei, ZHENG Ling, et al. Multi-objective control and optimization of active energy-regenerative suspension based on road recognition[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 129-137. [12] 龙江启,向锦涛,俞平,等. 适用于非线性主动悬架滑模控制的线性干扰观测器[J]. 吉林大学学报(工学版),2021,51(04):1230-1240. LONG Qijiang, XIANG Jintao, YU Ping, et al. Linear interference observer for sliding mode control of nonlinear active suspension[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(04): 1230-1240. [13] 寇发荣,武江浩,许家楠,等. 整车电磁混合主动悬架故障诊断与容错控制研究[J]. 振动与冲击,2022,41(04):101-109. KOU Farong, WU Jianghao, XU Jianan, et al. Research on fault diagnosis and fault tolerance control of vehicle electromagnetic hybrid active suspension[J]. Journal of Vibration and Shock, 2022, 41(04), 101-109. [14] 沙磊,王树波,刘逸坚,等. 基于扩张状态观测器的二质量系统非奇异快速终端滑模控制[J]. 控制与决策,2023,38(3):850-856. SHA Lei, WANG Shubo, LIU Yijian, et al. Nonsingular fast terminal sliding mode control based on extended state observer for two mass systems[J]. Control and Decision, 2023, 38(3): 850-856. [15] AL AELA A M, KENNE J P, MINTSA H A. Adaptive neural network and nonlinear electrohydraulic active suspension control system[J]. Journal of Vibration and Control, 2022, 28(3): 243-259. [16] 孙晓东,蔡峰,蔡英凤,等. 主动悬架用直线电机模型预测推力控制[J]. 中国公路学报,2021,34(9):85-100. SUN Xiaodong, CAI Feng, CAI Yingfeng, et al. Improved model predictive thrust-force control of linear motors for active suspensions[J]. China Journal of Highway and Transport, 2021, 34(9): 85-100. [17] 陈龙,陈明,孙晓强,等. 空气悬架客车横向动力学建模和稳定性分析[J]. 汽车工程,2022,44(11):1746-1754. CHEN Long, CHEN Ming, SUN Xiaoqiang, et al. Lateral dynamics modeling and stability analysis of bus with air suspension system[J]. Automotive Engineering, 2022, 44(11): 1746-1754. [18] 赵昌方,孙船斌,乐贵高,等. 八轴连通式油气悬架车辆行驶性能和通过性能研究[J]. 振动与冲击,2021,40(4):188-194. ZHAO Changfang, SUN Chuanbin, YUE Guigao, et al. A study on driving performance and passing performance of the vehicle with eight-shaft interconnected hydro-pneumatic suspension[J]. Journal of Vibration and Shock, 2021, 40(4): 188-194. [19] ALSHARIF A O M, JMAL A, NAIFAR O, et al. Unknown input observer scheme for a class of nonlinear generalized proportional fractional order systems[J]. Symmetry, 2023, 15(6): 1233. [20] SAIDI I, TOUATI N. Sliding Mode Control of a 2DOF Robot Manipulator: A Simulation Study Using Artificial Neural Networks with Minimum Parameter Learning[J]. Recent Patents on Mechanical Engineering, 2022, 15(2): 241-253. [21] 汪若尘,戴煜,丁仁凯,等. 混合电磁悬架作动器设计与试验[J]. 农业机械学报,2019,50(5):385-393. WANG Ruochen, DAI Yu, DING Renkai, et al. Design and experiment on actuator for hybrid electromagnetic suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 385-393. [22] 谢张军,张志飞,徐中明,等. 面向人体振动响应的ISD悬架座椅性能分析[J]. 振动与冲击,2018,37(14):180-187. XIE Zhangjun, ZHANG Zhifei, XU Zhongming, et al. Performance analysis on ISD suspension seat based on human vibration response[J]. Journal of Vibration and Shock, 2018, 37(14): 180-187.
PDF(3801 KB)

189

Accesses

0

Citation

Detail

Sections
Recommended

/