Dynamic splitting tests of simulated lunar soil geopolymer reinforced with two types of fibers

MA Qinyong1,2, GU Jinhui2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (13) : 144-152.

PDF(3866 KB)
PDF(3866 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (13) : 144-152.

Dynamic splitting tests of simulated lunar soil geopolymer reinforced with two types of fibers

  • MA Qinyong1,2, GU Jinhui2
Author information +
History +

Abstract

In order to explore the dynamic splitting mechanical properties of fiber reinforced lunar soil simulant, polypropylene fiber and basalt fiber were used to prepare fiber reinforced lunar soil simulant based geopolymer disk specimens. Split Hopkinson pressure bar (SHPB) device was used to carry out impact splitting test, and the distribution and arrangement of fibers at the fracture surface of geopolymer were observed by scanning electron microscope. The test results show that when the polypropylene fiber content is 0.4%, the splitting tensile strength of the specimen reaches the maximum, which is 22.9% -27.3% higher than that of the undoped specimen. Under the same fiber content, the gain effect of polypropylene fiber on the splitting tensile strength of the specimen is better than that of basalt fiber; when the fiber content is constant, the dynamic splitting tensile strength of the specimen is positively correlated with the impact pressure, and the gain effect of the fiber on the splitting tensile strength is negatively correlated with the impact pressure. The test block splits into two relatively complete halves along the axial direction under the impact load. The incorporation of the fiber reduces the damage degree of the specimen and improves the brittle failure. The average particle size of the splitting fragmentation of the specimen increases with the increase of the fiber content. The research results provide a reference for the selection of construction materials for future lunar bases.

Key words

lunar soil simulant / polypropylene fiber / basalt fiber / geopolymer / split Hopkinson pressure bar (SHPB) / dynamic splitting tensile strength

Cite this article

Download Citations
MA Qinyong1,2, GU Jinhui2. Dynamic splitting tests of simulated lunar soil geopolymer reinforced with two types of fibers[J]. Journal of Vibration and Shock, 2024, 43(13): 144-152

References

[1] Wang C, Nie H, Chen J, et al. The design and dynamic analysis of a lunar lander with semi-active control[J]. Acta Astronautica, 2019, 157: 145-56. [2] Hamideh M, Ebrahim N K, Angel P S, et al. Rheology of activated phosphorus slag with lime and alkaline salts[J]. Cement and Concrete Research, 2018, 113: 121-129. [3] 刘琛,李勇,周文等. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报,2022, 36(22): 14-20. LIU Chen, LI Yong, ZHOU Wen, et al. In-situ forming technology of Lunar/Martian soil simulant [J]. Materials Reports, 2022, 36(22): 14-20. [4] 李琛,魏奎先,李阳等. 月球表面矿产资源原位利用研究进展[J]. 中南大学学报(自然科学版),2020, 51(12): 3289-3299. LI Chen, WEI Kui-xian, LI Yang, et al. Research progress on in-situ resources utilization of Lunar surface minerals [J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3289-3299. [5] Grugel R N. Integrity of sulfur concrete subjected to simulated lunar temperature cycles[J]. Advance in Space Research, 2012, 50(9): 1294-1299. [6] Zhou S Q, Yang, et al. Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition[J]. Acta Astronautica, 2021, 189: 90-98. [7] Xiong G Y, Guo X L, Yuan S T, et al. The mechanical and structural properties of lunar regolith simulant based geopolymer under extreme temperature environment on the moon through experimental and simulation methods[J]. Construction and Building Materials, 2022, 325, 126679. [8] Pilehvar S, Arnhof M, Pamies R, et al. Utilization of urea as an ac¬cessible super plasticizer on the moon for lunar geopolymer mixtures[J]. Journal of Cleaner Production, 2020, 247: 119177. [9] 周思齐,张荣荣,杨湛宁等. 3D打印模拟月壤道路材料制备与性能研究[J]. 中国公路学报,2022, 35(08): 105-117. ZHOU Si-qi, ZHANG Rong-rong, YANG Zhan-ning, et al. Preparation and performance evaluation on 3D printed road material based on lunar soil simulant [J]. China Journal of Highway and Transport, 2022, 35(08): 105-117. [10] Zhang R R, Zhou S Q, Li Feng. Mechanical and microstructural characterization of carbon nanofiber-reinforced geopolymer nanocomposite based on lunar regolith simulant [J]. Journal of Materials in Civil Engineering, 2022, 34(1): 04021387. [11] 罗鑫,许金余,李为民. 纤维增强地质聚合物混凝土早期冲击力学性能的对比研究[J]. 振动与冲击,2009, 28(10): 163-168+232-233. LUO Xin, XU Jin-yu, LI Wei-min. Early impact properties of fiber reinforced geopolymer concrete [J]. Journal of Vibration and Shock, 2009, 28(10): 163-168+232-233. [12] 李刊,魏智强,乔宏霞等. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报,2021, 35(S1): 654-661. LI Kan, WEI Zhi-qiang, QIAO Hong-xia, et al. Research progress of the influence of four kinds of admixtures on the properties of polymer cement-based materials [J]. 2021, 35(S1): 654-661. [13] Adel K F G, U.Johnson A, Norazura M B, et al. Mechanical properties, flexural behaviour, and ductility characteristics of fibre-reinforced geopolymer motar[J]. Construction and Building Materials, 2023, 403, 133109. [14] 邢丹,葸雄宇,郭泽世等. 模拟月壤制备连续纤维的可行性研究[J]. 中国科学:技术科学,2020, 50(12): 1625-1633. XING Dan, XI Xiong-yu, GUO Ze-shi, et al. Study on the feasibility of preparing a continuous fiber using lunar soil simulant [J]. SCIENTIA SINICA Technologica, 2020, 50: 1625-1633. [15] 肖俊孝,庞宝君,唐钧跃等. 月壤水冰模拟样本SHPB试验及反射波特性分析[J]. 深空探测学报(中英文) ,2022, 9(02): 150-156. XIAO Jun-xiao, PANG Bao-jun, TANG Jun-yue, et al. SHPB test of lunar water ice simulant and analysis of reflected wave characteristics [J]. Journal of Deep Space Exploration, 2022, 9(02): 150-156. [16] 马芹永,鲍晓璇. 不同负温和含水率模拟月壤SHPB试验与分析[J]. 矿业科学学报,2023, 8(01): 93-101. MA Qin-yong, BAO Xiao-xuan. SHPB tests and analysis of lunar soil simulant under different negative temperatures and water contents [J]. Journal of Mining Science and Technology, 2023, 8(1): 093-101. [17] 宫凤强,李夕兵. 巴西圆盘劈裂试验中拉伸模量的解析算法[J]. 岩石力学与工程学报,2010, 29(05): 881-891. GONG Feng-qiang, LI Xi-bing. Analytical algorithm to estimate tensile modulus in Brazilian disk splitting tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(05): 881-891. [18] Chang B C, Ann K Y. Development of assessment methods of lunar soil simulants with respect to chemical composition [J]. Advances in Space Research, 2019, 63(8): 2584-2597. [19] 蒋明镜,李立青. TJ-1模拟月壤的研制[J]. 岩土工程学报,2011, 33(2): 209-214. JIANG Ming-jing, LI Li-qing. Development of TJ-1 lunar soil simulant [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2):209-214. [20] 吕晓聪,徐金余,赵德辉. 冲击荷载循环作用下砂岩动态力学性能的围压效应研究[J]. 工程力学,2011,28(1): 138-144. LU Xiao-chong, XU Jin-yu, ZHAO De-hui. Research on confining pressure effect of sandstone dynamic mechanical performance under the cyclical impact loadings [J]. Engineering Mechanics, 2011, 28(1): 138-144. [21] 陶俊林. SHPB实验中几个问题的讨论[J]. 西南科技大学学报,2009, 24(3): 27-35. TAO Jun-lin. Some questions need to discuss in the SHPB experiment [J]. Journal of Southwest University of Science and Technology, 2009, 24(3): 27-35. [22] 宋时,胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击,2005, 25(4): 368-373. SONG Shi, HU Shi-sheng. Two-wave method and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368-373. [23] 刘曙光,尹立强,闫长旺,等. 聚乙烯醇纤维对盐冻混凝土抗折强度的影响[J]. 材料导报,2015, 29(24): 92-97. LIU Shu-guang, YI Li-qiang, YAN Chang-wang, et al. Improved flexural strength resistance of PVA fiber-reinforced concrete subjected to freezing and thawing cycles in chloride environment [J]. Materials Reports, 2015, 29(24): 92-97. [24] 杨荣周,徐颖,陈佩圆等. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报,2021, 35(10): 10062-10072. YANG Rong-zhou, XU Ying, CHEN Pei-yuan, et al. Experimental study on dynamic mechanics, energy characteristics, and failure mechanism of rubber cement mortar under SHPB splitting tests [J]. Materials Reports, 2021, 35(10): 10062-10072. [25] 马芹永,高常辉. 冲击荷载下玄武岩纤维水泥土吸能及分形特征[J]. 岩土力学,2018,39(11): 3921-3928+3968. MA Qin-yong, GAO Chang-hui. Energy absorption and fractal characteristics of basalt fiber-reinforced cement -soil under impact loads [J]. Rock and Soil Mechanics, 2018, 39(11): 3921-3928+3968. [26] 刘曙光,闫敏,闫长旺等. 聚乙烯醇纤维强化水泥基复合材料的抗盐冻性能[J]. 吉林大学学报(工学版) ,2012, 42(01): 63-67. LIU Shu-guang, YAN Min, YAN Chang-wang, et al. Deicing salt resistance of PVA fiber reinforced cementitious composite [J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(01): 63-67. [27] 胡成,翁兴中,张俊等. 多尺度纤维加筋水泥土抗压性能试验研究[J]. 公路交通科技,2020, 37(09): 16-24. HU Cheng, WENG Xing-zhong, ZHANG Jun, et al. Experimental study on compressive performance of multi-scale fiber reinforced cement soil [J]. Journal of Highway and Transportation Research and Development, 2020, 37(09): 16-24.
PDF(3866 KB)

156

Accesses

0

Citation

Detail

Sections
Recommended

/