Fault injection and diagnosis of gate hoist based on mechanical-hydraulic joint simulation model

LI Haoyu1, XU Ping2, TIE Ying1, HUANG Jianzhang1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (13) : 198-209.

PDF(3525 KB)
PDF(3525 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (13) : 198-209.

Fault injection and diagnosis of gate hoist based on mechanical-hydraulic joint simulation model

  • LI Haoyu1, XU Ping2, TIE Ying1, HUANG Jianzhang1
Author information +
History +

Abstract

For evaluating the operating signal and fault diagnosis of the radial gate system with fault characteristics, based on the test data of a radial gate, a mechanical-hydraulic joint simulation model was established, the model similarity was analyzed and modified. Control the working status of the gate through a gate state control strategy based on real-time gate opening feedback signal,the simulation efficiency and stability were improved, more realistic state characteristics were obtained. Many faults were injected into the model to analyze the impact of faults on the gate. For reflecting the fault characteristic information, several signals were selected for fusion and weight distribution were adjusted, the problem of large fluctuations in fault identification accuracy was solved. For improving the generalization ability of network models, adding residual structure to the network model for optimization, the problem of low fault identification accuracy was solved. The results show that the model can show the dynamic changes of important signals such as pressure, flow and vibration; the accuracy of the neural network based on residual structure optimization using the improved weighted multi-channel data fusion is 97.17%.

Key words

Radial gate / Mechanical hydraulic joint simulation / Fault diagnosis / Transfer learning

Cite this article

Download Citations
LI Haoyu1, XU Ping2, TIE Ying1, HUANG Jianzhang1. Fault injection and diagnosis of gate hoist based on mechanical-hydraulic joint simulation model[J]. Journal of Vibration and Shock, 2024, 43(13): 198-209

References

[1] 郝楠楠,韩刚,滕楷.弧形闸门状态监测与故障诊断技术研究[J]. 中国水能及电气化, 2020, (09): 42-45. HAO Nan-nan, HAN Gang, TENG Ka. Research on condition monitoring and fault diagnosis technology of radial gate[J]. China Water Power & Electrification, 2020 ,(09): 42-45. [2] FANG J, LUO M C, WANG J Q, et al. FMI-Based Multi-Domain Simulation for an Aero-Engine Control System[J]. Aerospace, 2021 ,8(7): 180-180. [3] XU T, Xia Q X, LONG J C, et al. A study on multi-domain modeling and simulation of precision high-speed servo numerical control punching press[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2018, 232(7): 830-844. [4] 王艳青, 闫月晖, 马嵩华, 等. 滚动轴承数字孪生几何模型精细建模方法[J]. 计算机集成制造系统,2023(6):1882-1893. Wang Yan-qing, Yan Yue-hui, Ma Song-hua, et al. Fine modeling method of digital twin geometric model for rolling bearing [J]. Computer Integrated Manufacturing Systems,2023(6):1882-1893. [5] 张旭飞, 邵焱, 付玉琴等. 起重机变幅系统Simcenter 3D机液联合仿真分析[J]. 机械工程学报, 2022, 58(24):334-341. Zhang Xu-fei, Shao Yan, Fu Yu-qin, et al. Mechanical and hydraulic Co-simulation analysis for crane luffing System based on simcenter 3D[J]. Journal of Mechanical Engineering, 2022, 58 (24): 334-341 [6] 胡涛, 申立群, 付晋, 等. 航天伺服机构鲁棒控制与机电液联合仿真[J]. 系统工程与电子技术, 2023, 45(10): 3218-3225. Hu Tao, Shen Li-qun, Fu Jin, et al. Robust control and electromechanical-hydraulic joint simulation of spacecraft servo mechanism [J]. Systems Engineering and Electronics, 2023, 45(10): 3218-3225. [7] 王同建, 杨书伟, 谭晓丹, 等. 基于DEM-MBD联合仿真的液压挖掘机作业性能分析[J]. 吉林大学学报(工学版), 2022, 52(04): 811-818. Wang Tong-jian, Yang Shu-wei, Tan Xiao-dan, et al. Performance analysis of hydraulic excavator based on DEM-MBD co-simulation [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (04): 811-818 [8] 汪飞雪, 姚静, 胡福泰, 等. 锻造液压机振动特性机-液联合仿真[J]. 中国机械工程, 2020, 31(10):1175-1182+1189. Wang Fei-xue, Yao Jing, Hu Fu-tai, et al. Mechanical-hydraulic Co-simulation of vibration characteristics of forging Hydraulic Press [J]. China Mechanical Engineering, 2020,31 (10): 1175-1182+1189 [9] 贺利芳, 刘秋玲, 张刚. 高斯势分段双稳随机共振在不同噪声下的轴承故障诊[J].振动与冲击, 2023, 42(03): 30-42. He Li-fang, Liu Qiu-ling, Zhang Gang. Bearing fault diagnosis under different noises with GPPBSR system[J]. Journal of Vibration and Shock, 2023, 42 (03): 30-42 [10] 石静雯,侯立群.基于一维卷积注意力门控循环网络和迁移学习的轴承故障诊[J].振动与冲击, 2023, 42(03): 159-164+173. Shi Jing-wen, Hou Li-qun. Bearing fault diagnosis based on 1D CNN attention gated recurrent network and transfer learning[J]. Journal of Vibration and Shock, 2023, 42 (03): 159-164+173 [11] 董绍江, 朱朋, 朱孙科,等.基于仿真数据驱动和领域自适应的滚动轴承故障诊断方法[J].中国机械工程, 2023, 34(06): 694-702. Dong Shao-jiang, Zhu Peng, Zhu Sun-ke, et al. Fault diagnosis method of rolling bearings based on simulation data drive and domain adaptation [J]. China Mechanical Engineering, 2023, 34 (06): 694-702. [12] 田鹏飞,于游, 董明, 等.基于CNN-SVM的高压输电线路故障识别方法[J].电力系统保护与控制, 2022, 50(13): 119-125. Tian Peng-fei, Yu You, Dong Ming, et al. A CNN-SVM-based fault identification method for high-voltage transmission lines [J]. Power System Protection and Control, 2022, 50 (13): 119-125. [13] PANG B, Mojtaba N, SUN Z D, et al. An optimized variational mode extraction method for rolling bearing fault diagnosis[J]. Structural Health Monitoring, 2022, 21(2): 558-570. [14] 宋庭新,黄继承,刘尚奇,等.小样本下基于DWT和2D-CNN的齿轮故障诊断方法[J/OL]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230423.1131.004.html, 2023-04-23. Song Ting-xin, Huang Cheng-zhi, Liu Shang-qi, et al. Gear fault diagnosis method based on DWT and 2D-CNN in small samples [J/OL]. http://kns.cnki.net/ kcms/detail/11.5946.TP.20230423.1131.004.html, 2023-04-23. [15] LI X, SHAO H D, JIANG H K, et al. Modified Gaussian convolutional deep belief network and infrared thermal imaging for intelligent fault diagnosis of rotor-bearing system under time-varying speeds[J]. Structural Health Monitoring, 2022, 21(2): 339-353. [16] 李海英,孙越,张笑,等.模态时频图与ResNet50融合的真空接触器故障诊断方法[J].高电压技术, 2023, 49(05): 1831-1840. Li Hai-ying, Sun Yue, Zhang Xiao, et al. Fault diagnosis of vacuum contactor based on modal time-frequency diagram and ResNet50[J]. High Voltage Engineering, 2023, 49 (05): 1831-1840. [17] 邱继伟,罗海胜,张亚,等.基于解释结构模型的复杂系统故障诊断[J/OL]. DOI:10.13229/j.cnki.jdxbgxb.20221642, 2023-06-15. Qiu Ji-wei, Luo Hai-sheng, Zhang Ya, et al. Fault diagnosis of complex systems based on interpretive structural modeling[J/OL]. DOI:10.13229/j.cnki.jdxbgxb.20221642, 2023-06-15. [18] 朱良玉,崔倩文,胡超凡等.基于子结构最优传输的跨工况轴承故障诊断方[J]. 振动与冲击, 2023, 42(07): 273-280. Zhu Liang-yu, Cui Qian-wen, Hu Chao-fan, et al. Fault diagnosis method of bearing under cross working conditions based on substructure optimal transmission[J]. Journal of Vibration and Shock, 2023, 42(7): 273-280. [19] 杨胜康,孔宪光,王奇斌等.基于多源域深度迁移学习的机械故障诊断[J]. 振动与冲击, 2022, 41(09): 32-40. Yang Sheng-kang, Kong Xian-guang, Wang Qi-bin, et al. Mechanical fault diagnosis based on multi-source domain deep transfer learning[J]. Journal of Vibration and Shock, 2022, 41(9): 32-40. [20] 胡若晖, 张敏, 许文鑫. 基于DCGAN和DANN网络的滚动轴承跨域故障诊断[J]. 振动与冲击, 2022, 41(6): 21-29. Hu Ruo-hui,Zhang Min,Xu Wen-xin. Cross-domain fault diagnosis of rolling element bearings using DCGAN and DANN[J]. Journal of Vibration and Shock, 2022, 41(6): 21-29. [21] 徐易芸,马健,陈良, 等. 基于相似性度量迁移学习的轴承故障诊断[J]. 振动与冲击, 2022, 41(16): 217-223. Xu Yi-yun, Ma Jian, Chen Liang, et al. A bearing fault diagnosis based on similarity measurement for transfer learning[J]. Journal of Vibration and Shock, 2022, 41(16): 217-223. [22] 李文豪, 包家汉, 王智冲, 等. 负负载工况下打捆机举升机构的机液联合仿真[J].机床与液压, 2022, 50(14): 126-130. Li Wen-hao, Bao Jia-han, Wang Zhi-chong, et al. Mechanical-hydraulic Co-simulation of lifting mechanism of baler under negative load[J]. Machine Tool & Hydraulics, 2022, 50(14):126-130. [23] Muhammad R, Harish G, Fazli A, et al. Improved cosine similarity and distance measures-based TOPSIS method for cubic Fermatean fuzzy sets[J]. Alexandria Engineering Journal,2023,73: 309-319. [24] 郭远晶, 魏燕定, 金晓航, 等. 时频谱相似性度量的故障特征提取方法[J]. 振动与冲击, 2020, 39(12): 70-77. Guo Yuan-jing, Wei Yan-ding, Jin Xiao-hang, et al. Fault feature extraction from time-frequency spectrum by using similarity measurement [J]. Journal of Vibration and Shock, 2020,39 (12): 70-77. [25] 付松, 钟诗胜, 林琳, 等.基于迁移学习的民航发动机小样本故障诊断[J].计算机集成制造系统, 2021, 27(12): 3450-3461. Fu Song, Zhong Shi-sheng, Lin Lin, et al. Gas turbine fault diagnosis method under small sample based on transfer learning [J]. Computer Integrated Manufacturing System, 2021,27 (12): 3450-3461. [26] LI J K, LIN M, LI Y K, et al. Transfer learning with limited labeled data for fault diagnosis in nuclear power plants[J]. Nuclear Engineering and Design, 2022, 390: 111690-. [27] ZHOU J, YONG Y, LI X, et al. Multivariate local characteristic-scale decomposition and 1.5-dimensional empirical envelope spectrum based gear fault diagnosis[J]. Mechanism and Machine Theory, 2022, (172-): 172. [28] ZHANG J Z, WU Y B, XU Z, et al. Fault diagnosis of high voltage circuit breaker based on multi-sensor information fusion with training weights[J]. Measurement, 2022, 192:110894-. [29] 侯召国,王华伟,熊明兰等.基于迁移学习与加权多通道融合的齿轮箱故障诊[J].振动与冲击, 2023, 42(09): 236-246. Hou Zhao-guo, Wang Hua-wei, Xiong Ming-lan, et al. Gearbox fault diagnosis based on transfer learning and weighted multi-channel fusion [J]. Journal of Vibration and Shock, 2023,42 (09): 236-24.
PDF(3525 KB)

120

Accesses

0

Citation

Detail

Sections
Recommended

/