Vibration control of central buckles of long-span suspension bridge under random vehicle excitation

ZHAO Yue1, HUANG Pingming2,3, FU Yingzi1, YUAN Yangguang4, SU Botong1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (13) : 288-298.

PDF(3941 KB)
PDF(3941 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (13) : 288-298.

Vibration control of central buckles of long-span suspension bridge under random vehicle excitation

  • ZHAO Yue1, HUANG Pingming2,3, FU Yingzi1, YUAN Yangguang4, SU Botong1
Author information +
History +

Abstract

The obvious vibration of long-span suspension bridge under traffic load may lead to the fatigue damage that affect the service safety of structures. To reduce the structural vibration of long-span suspension bridge, this paper investigated the influence of flexible and rigid central buckles based on finite element simulation, analyzed their influence on structural modal characteristics and the control effect under stochastic traffic flow considering parameter correlation and traffic clustering characteristics. The corrosion fatigue life of suspender steel wire was also evaluated. The results show that the central buckle mainly affects the antisymmetric vertical bending frequency and the first-order torsional frequency of the bridge. The frequency of the flexible central buckle increases with the number of buckles, and the improving effect of the rigid buckle is close to that of the three flexible central buckles. Under traffic flow, the central buckle can significantly reduce the girder longitudinal displacement and the cumulative displacement, and the relative displacement between the cable and the girder. As the number of flexible central buckles increases, the control efficiency improves, but the improving effect gradually decreases. The control effect of the rigid central buckle on the girder longitudinal displacement and cumulative displacement is similar to that of three flexible buckles, and its control effect on the relative displacement is better than that of flexible central buckle. The corrosion fatigue life of suspender steel wire is consistent with the trend of bending stress. The overall bending stress of long suspenders is relatively small that the influence on steel wire life is not obvious. The corrosion fatigue life of short suspender steel wires has greatly increased, the increase in the number of flexible central buckles has limited improving effect while that of rigid central buckles is close to three flexible buckles.

Key words

suspension bridge / central buckle / traffic flow / girder displacement / fatigue life

Cite this article

Download Citations
ZHAO Yue1, HUANG Pingming2,3, FU Yingzi1, YUAN Yangguang4, SU Botong1. Vibration control of central buckles of long-span suspension bridge under random vehicle excitation[J]. Journal of Vibration and Shock, 2024, 43(13): 288-298

References

[1] GUO T, LIU J, ZHANG Y F, et al. Displacement monitoring and analysis of expansion joints of long-span steel bridges with viscous dampers[J]. Journal of Bridge Engineering. 2015, 20(9), 4014099.1-4014099.11. [2] 袁爱民,杨彤,夏叶飞等. 润扬大桥悬索桥长吊索更换技术研究[J].中国公路学报,2021,34(02):289-297. Yuan Aimin, Yang Tong, Xia Yefei, et al. Replacement technology of long suspenders of Runyang suspension bridge[J]. China Journal of Highway and Transport, 21,34(02):289-297. [3] 高文博,袁阳光,黄平明等.大件运输车载下考虑强度退化过程的钢绞线斜拉索安全评估[J].中国公路学报,2020,33(08):169-181. Gao Wenbo, Yuan Yangguang, Huang Pingming, et al. Safety assessment of teel strand stay cable under customized transport vehicle load considering strength degradation[J]. China Journal of Highway and Transport, 2020,33(08):169-181. [4] 王浩,李爱群.中央扣对大跨度悬索桥风致抖振响应的影响[J].土木工程学报,2009,42(07):78-84. Wang Hao, Li Aiqun. Influence of central buckle on wind-induced buffeting response of long-span suspension bridges[J]. China Civil Engineering Journal, 2009,42(07):78-84. [5] 徐勋, 强士中. 中央扣对大跨悬索桥动力特性和地震响应的影响研究[J]. 铁道学报, 2010, 32(04): 84-91. Xu Xun, Qiang Shizhong. Influence of central buckle on dynamic behavior and seismic response of long-span suspension bridge[J]. Journal of the China Railway Society, 2010, 32(04): 84-91. [6] Wang H, Li A Q, Guo T. Accurate stress analysis on rigid central buckle of long-span suspension bridges based on submodel method[J]. Science in China Series E. 2009, 52(04), 1019-1026. [7] LIU Z X, GUO T, HUANG L Y, et al. Fatigue life evaluation on short suspenders of long-span suspension bridge with central clamps[J]. Journal of Bridge Engineering. 2017, 22(10), 04017074.1-04017074.11. [8] 曾德礼.柔性中央扣对单跨悬索桥的影响分析[J].铁道建筑,2019,59(11):16-18,25. Zeng Deli. Analysis on Influence of Flexible Central Buckle on Single Span Suspension Bridge[J]. Railway Engineering. 2019,59(11), 16-18,25. [9] 王连华,孙璋鸿,崔剑锋等.车辆激励下中央扣对悬索桥梁端位移的影响[J].湖南大学学报(自然科学版),2019,46(03):18-24. Wang Lianhua, Sun Zhanghong, Cui Jianfeng, et al. Effects of central buckle on end displacement of suspension bridges under vehicle excitation[J]. Journal of Hunan University (Natural Sciences), 2019, 46(03): 18-24. [10] ZHAO Y, GUO X, SU B, et al. Evaluation of flexible central buckles on short suspenders’ corrosion fatigue degradation on a suspension bridge under traffic load[J]. Materials 2023, 16, 290. [11] 王浩,李爱群,杨玉冬等.中央扣对大跨悬索桥动力特性的影响[J].中国公路学报,2006(06):49-53. Wang Hao, Li Aiqun, Yang Yudong, et al. Influence of central buckle on dynamic behavior of long-span suspension bridge[J]. China Journal of Highway and Transport, 2006(06):49-53. [12] 韩万水, 马麟, 汪炳, 等. 随机车流-桥梁系统耦合振动精细化分析与动态可视化[J]. 中国公路学报, 2013, 26(04): 78-87. Han Wanshui, Ma Lin, Wang Bing, et al. Refinement analysis and dynamic visualization of traffic-bridge coupling vibration system[J]. China Journal of Highway and Transport, 2013, 26(04): 78-87. [13] 袁阳光,郭雷,裴浩楠等.G104国道卡车荷载概率特性分析[J].北京工业大学学报,2017,43(11):1697-1705. Yuan Yangguang, Guo Lei, Pei Haonan, et al. Truck load probabilistic characteristics of g104 highway[J]. Journal of Beijing University of Technology, 2017,43(11):1697-1705. [14] 院素静. 公路车-桥耦合典型车辆运动方程的建立及软件设计[D].长安大学,2012. Yuan Sujing. Development and programing of typical vehicles equation of motion for coupling vibration between highway bridge and vehicles[D]. Chang’an University, 2012. [15] 韩万水,赵越,刘焕举,等.风-车-桥耦合振动研究现状及发展趋势[J].中国公路学报, 2018, 31(7):23. Han Wanshui, Zhao Yue, Liu Huanju, et al. Research and development trends of wind-vehicle-bridge coupling vibration systems[J]. China Journal of Highway and Transport, 2018, 31(7):23. [16] 刘焕举,韩万水,刘宁等.刹车状况下桥上随机车流动态演化及车-桥耦合振动分析[J].中国公路学报,2020,33(04):76-88. Liu Huanju, Han Wanshui, Liu Ning, et al. Dynamic evolution of stochastic vehicle flow on bridge under braking conditions and analysis of vehicle-bridge coupled vibration[J]. China Journal of Highway and Transport, 2020,33(04):76-88. [17] 李明,刘扬,杨兴胜.考虑轴重相关的随机车流荷载效应[J].浙江大学学报(工学版),2019,53(01):78-88. Li Ming, Liu Yang, Yang Xingsheng. Random vehicle flow load effect considering axle load[J]. Journal of Zhejiang University(Engineering Science), 2019,53(01):78-88. [18] JOE S, KUO F Y. Constructing Sobol’ sequences with better two-dimensional projections[J]. SIAM J. Sci. Comput. 2008, 30, 2635–2654. [19] 郭雪莲,黄平明,韩万水等.基于特征熵权与样本加权的大跨桥梁多车道交通荷载聚类模型[J].中国公路学报,2022,35(10):183-193. Guo Xuelian, Huang Pingming, Han Wanshui, et al. Multi-lane traffic load clustering model for long-span bridges based on weight of feature entropy and sample[J]. China Journal of Highway and Transport, 2022,35(10):183-193. [20] Wang D, Zhao Y, Wang J F, et al. Establishment and effect analysis of traffic load for long-span bridge via fusion of parameter correlation[J]. Structures,2023(55):1992-2002. [21] 龙关旭,韩万水,徐传昶等.随机车流制动状态下斜拉桥黏滞阻尼器振动控制研究[J].振动与冲击,2021,40(11):78-85. Long Guanxu, Han Wanshui, Xu Chuanchang, et al. Vibration control of cable stayed bridge with viscous damper under braking state of random traffic flow[J]. Journal of Vibration and Shock,2021,40(11):78-85. [22] 赵越,黄平明,刘修平等.基于等参映射与改进折半法的公路车桥耦合分析系统[J].湖南大学学报(自然科学版),2020,47(11):29-37. Zhao Yue, Huang Pingming, Liu Xiuping, et al. Highway vehicle-bridge interaction analysis system based on isoparametric mapping and improved binary search[J]. Journal of Hunan University(Natural Sciences) ,2020,47(11):29-37. [23] Wyatt T. A. Secondary stress in parallel wire suspension cables[J]. Journal of the Structural Division. 1960, 86(7), 37-59. [24] 何宪飞;陈艾荣.斜拉桥斜拉索局部弯曲应力分析[J].上海公路,1999,(S1):85-90. He Xianfei, Chen Airong. Local bending stress analysis of cable-stayed Bridges[J]. Shanghai Highways, 1999,(S1):85-90. [25] Kondoh M, Okuda M, Kawaguchi K, Yamazaki T. Design method of a hanger system for long-span suspension bridge[J]. Journal of Bridge Engineering. 2001, 6(3), 176-182. [26] GUO T, LIU J, HUANG L Y. Investment and control of excessive cumulative girder movements of long-span steel suspension bridge[J]. Engineering Structures. 2016, 125:217-226. [27] ZHAO Y, SU B T, FAN X, et al. Corrosion fatigue degradation characteristics of galvanized and galfan high strength steel wire[J]. Materials 2023, 16, 708. [28] SHI P; MAHADEVAN S. Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction[J]. Eng. Fract. Mech.2001, 68, 1493–1507. [29] Mayrbaurl R M, Camo S. Cracking and fracture of suspension bridge wire[J]. Journal of Bridge Engineering. 2001, 6(6), 645-650.
PDF(3941 KB)

155

Accesses

0

Citation

Detail

Sections
Recommended

/