Experimental study on the spalling failure of sandstone under the oblique incidence of stress waves

WANG Shiming1, BAI Yunfan1, WANG Jiaqi1, WU Qiuhong2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (14) : 201-210.

PDF(2370 KB)
PDF(2370 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (14) : 201-210.

Experimental study on the spalling failure of sandstone under the oblique incidence of stress waves

  • WANG Shiming1,BAI Yunfan1,WANG Jiaqi1,WU Qiuhong2
Author information +
History +

Abstract

In underground engineering structures, the surrounding rock is prone to spalling under the action of stress waves generated by blasting or earthquake. As the stress waves usually propagates in any direction in the surrounding rock, this study aimed to investigate the effects of oblique incidence of stress waves on the spalling failure characteristics of sandstone specimens. The Split Hopkinson Pressure Bar (SHPB) device with a diameter of 50 mm was utilized to conduct spalling failure tests on sandstone specimens under stress waves incident at angles of 0°, 30°, 45°, and 60°. The high-speed camera recorded the spalling failure process of the specimens. The test results revealed that the incident angle of the stress wave significantly influenced the initial spalling position and spalling strength of the specimens. With increasing incident angle, the initial spalling length increased, while the spalling strength decreased in this study. Furthermore, the simulation results obtained using the Particle Flow Code (PFC) were in good agreement with the test results. In the simulation, the influence of impact velocity on sandstone spalling failure under oblique incidence of stress wave is further studied. It was found that compared to lower impact velocities, the failure caused by stress waves under vertical incidence did not significantly change, while the number of spalling cracks and the extent of damage increased significantly under oblique incidence.

Key words

sandstone / stress wave / oblique incidence / spalling failure / numerical simulation

Cite this article

Download Citations
WANG Shiming1, BAI Yunfan1, WANG Jiaqi1, WU Qiuhong2. Experimental study on the spalling failure of sandstone under the oblique incidence of stress waves[J]. Journal of Vibration and Shock, 2024, 43(14): 201-210

References

[1] CHO Sang Ho, YUJI Ogata, Katsuhiko Kaneko. Strain-rate dependency of the dynamic tensile strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763-777. [2] 王礼立. 应力波基础[M]. 北京: 冶金工业出版社, 1992. [3] HOPKINSON Bertram. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society London, 1914, 213(497-508): 437–456. [4] CAI J G, ZHAO Jian. Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 661-682. [5] PYRAK-NOLTE L J. Seismic response of fractures and the interrelations among fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 1996, 33(8): 787-802. [6] 李夕兵, 陶明, 宫凤强, 等. 冲击载荷作用下硬岩层裂破坏的理论和试验研究[J]. 岩石力学与工程学报, 2011, 30(6): 1081-1088. LI Xibing, TAO Ming, GONG Fengqiang, et al. Theoretical and experimental study hard rock spalling fracture under impact dynamic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1081-1088. [7] EEZAR Benjamin, FORQUIN Pascal. An experimental method to determine the tensile strength of concrete at high rates of strain[J]. Experimental Mechanics, 2010, 50(7): 941-955. [8] LI Xibing, TAO Ming, WU Chengqing, et al. Spalling strength of rock under different static pre-confining pressures[J]. International Journal of Impact Engineering, 2017, 99: 69-74. [9] ZHAO Huatao, TAO Ming, LI Xibing, et al. Estimation of spalling strength of sandstone under different pre-confining pressure by experiment and numerical simulation[J]. International Journal of Impact Engineering, 2019, 133: 103359. [10] XU Jun, MA Lu, XIAO Xiaochun, et al. Experimental study of the formation process and behaviors of spalling in rock materials[J]. Engineering Failure Analysis, 2023, 143: 106873. [11] 陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2172-2181. TAO Ming, WANG Jun, LI Zhanjun, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172-2181. [12] 满轲, 刘晓丽, 宋志飞. 深部岩体半正弦应力波扰动下的层裂试验研究[J]. 岩土工程学报, 2022, 44(03): 428-434. MAN Ke, LIU Xiaoli, SONG Zhifei. Experimental study on spalling of deep rock under half sine stress wave disturbance[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(03): 428-434. [13] 李娜娜, 李建春, 李海波, 等. 节理接触面对应力波传播影响的SHPB试验研究[J]. 岩石力学与工程学报, 2015, 34(10): 1994-2000. LI Nana, LI Jianchun, LI Haibo, et al. SHPB experiment on influece of contact area of joints on propagation of stress wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 1994-2000. [14] 杨阳, 杨仁树, 王建国. 节理厚度对岩石动力特性影响的模拟试验[J]. 中国矿业大学学报, 2016, 45(2): 211-216. YANG Yang, YANG Renshu, WANG Jianguo. Simulation on material experiment on dynamic mechanical properties of jointed rock affected by joint thickness[J]. Journal of China University of Ming & Technology, 2016, 45(2): 211-216. [15] 杨仁树, 王茂源, 杨阳, 等. 充填材料对节理岩石动力学性能影响的模拟试验[J]. 振动与冲击, 2016, 35(12): 125-131. YANG Renshu, WANG Maoyuan, YANG Yang, et al. Simulation material experiment on the dynamic mechanical properties of jointed rock affected by joint-filling material[J]. Journal of Vibration and Shock, 2016, 35(12): 125-131. [16] 郭东明, 闫鹏洋, 凡龙飞, 等. 喷层混凝土-围岩组合体波动特性及动力特性研究[J]. 振动与冲击, 2018, 37(24): 85-91. GUO Dongming, YAN Pengyang, FAN Longfei, et al. A study on the stress wave characteristics and dynamic mechanical property of the sprayed concrete-surrounding rock combined body[J]. Journal of Vibration and Shock, 2018, 37(24): 85-91. [17] ZHU Wangcheng, PANG Mingzhang, HUANG Zhipig, et al. Numerical simulation on dynamic rock spalling[J]. Journal of Northeastern University (Natural Science), 2006, 27(5): 552. [18] 左宇军, 唐春安, 宫凤强. 应力波反射诱发层裂过程的数值模拟[J]. 吉首大学学报(自然科学版), 2006, 27(06):80-83. ZUO Yujun, TANG Chunan, GONG Fengqiang. Numerical simulation of stress wave reflection induced spalling process[J]. Journal of Jishou University (Natural Science Edition), 2006, 27(06): 80-83. [19] 左宇军, 朱万成, 唐春安, 等. 非均匀介质中应力波反射诱发层裂过程的数值模拟[J]. 中南大学学报(自然科学版), 2006, 27(06): 1177-1182. ZUO Yujun, ZHU Wancheng, TANG Chunan, et al. Numerical simulation on spallation process of inhomogeneous mediuminduced by reflection of stress wave[J]. Journal of Central South University (Science and Technology), 2006, 27(06): 1177-1182. [20] 邱加冬, 李地元, 李夕兵, 等. 预制缺陷对花岗岩层裂破坏的影响[J]. 爆炸与冲击, 2018, 38(3): 665-670. QIU Jiadong, LI Diyuan, LI Xibing, et al. Effect of pre-existing flaws on spalling fracture of granite[J]. Explosion and Shock Waves, 2018, 38(3): 665-670. [21] TAO Ming, MA Ao, ZHAO Rui, et al. Spallation damage mechanism of prefabricated elliptical holes by different transient incident waves in sandstones[J]. International Journal of Impact Engineering, 2020, 146: 103716. [22] SU Guoshao, CHEN Yanxiang, JIANG Quan, et al. Spalling failure of deep hard rock caverns[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023. [23] 范留明, 闫娜, 李宁. 薄弹性软弱夹层的动力响应模型[J]. 岩石力学与工程学报, 2006, 25(1): 88-92. FAN Liuming, YAN Na, LI Ning. Dynamic response model for thin soft interlayer considering interbedded reflecting waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 88-92. [24] 石崇, 徐卫亚, 周家文, 等. 节理面透射模型及其隔振性能研究[J]. 岩土力学, 2009, 30(03): 729-734. SHI Chong, XU Weiya, ZHOU Jiawen, et al. Transmission model of joint interface and its performance of vibration isolation[J]. Rock and Soil Mechanics, 2009, 30(03): 729-734. [25] 李夕兵. 岩石动力学基础与应用[M]. 北京: 科学出版社, 2014. [26] 陶明. 高应力岩体的动态加卸荷扰动特征与动力学机理研究[D]. 长沙: 中南大学, 2015. [27] WANG Shiming, WANG Jiaqi, XIONG Xianrui, et al. Effect of oblique incident wave perturbation on rock spalling: An insight from DEM modelling[J]. Journal of Central South University, 2023, 30(6): 1981-1992. [28] 陈欣, 周小涵, 许彬, 等. 裂隙岩体宏细观剪切损伤力学行为研究[J]. 岩石力学与工程学报, 2022, 41(12): 2509-2521. CHEN Xin, ZHOU Xiaohan, XU Shan, et al. Investigation on the macro-meso shear damage mechanical behaviors of fractured rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(12): 2509-2521. [29] QIU Jidong, LUO Lin, LI Xibing, et al. Numerical investigation on the tensile fracturing behavior of rock-shotcrete interface based on discrete element method[J]. International Journal of Mining Science and Technology, 2020, 30(3): 293-301. [30] QIU Jiadong, LI Diyuan, LI Xibing, et al. Dynamic fracturing behavior of layered rock with different inclination angles in SHPB tests[J]. Shock and Vibration, 2017. [31] LI Xibing, ZOU Yang, ZHOU Zilong. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method[J]. Rock Mechanics and Rock Engineering, 2014, 47: 1693-1709. [32] 王帅, 许莹, 张艳博, 等. 基于CT扫描的砂岩主次裂纹扩展特征及影响因素研究[J]. 岩土工程学报, 2022, 44(04): 702-711. WANG Shuai, XU Ying, ZHANG Yanbo, et al. Characteristics and influencing factors for propagation of primary and secondary cracks in sandstone based on CT scan[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(04): 702-711. [33] CHI Liyuan, ZHANG Zongxian, AALBERG Arne, et al. Fracture processes in granite blocks under blast loading[J]. Rock Mechanics and Rock Engineering, 2019, 52: 853-868.
PDF(2370 KB)

Accesses

Citation

Detail

Sections
Recommended

/