Experimental and finite element analysis of the explosion load model for prestressed concrete box girders

SUN Qixin1, LIU Chao2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (14) : 37-46.

PDF(2964 KB)
PDF(2964 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (14) : 37-46.

Experimental and finite element analysis of the explosion load model for prestressed concrete box girders

  • SUN Qixin1,LIU Chao2
Author information +
History +

Abstract

At present, there are few researches on blast pressure load and shock wave propagation law of box girder. Based on the engineering background of prestressed concrete box girder bridge which is widely used in concrete bridge at present, the explosion load test of prestressed box girder is designed with 1:5 scale. The experimental results show that the overpressure on the top plate of the box girder exhibits a non-linear descending gradient distribution along the longitudinal direction of the box girder, and the overpressure is approximately distributed along the transverse direction of the box girder as a trapezoidal load. As the proportional distance decreases, the overpressure increases gradually. Secondly, based on the explosion load test of box girder, the three-dimensional numerical analysis model of box girder explosion is established. The accuracy of the numerical simulation is verified by comparing the numerical analysis results with the experimental data. Based on the numerical results, the interaction mechanism between blast wave and box girder is revealed, and the propagation law of shock wave is clarified. Further research on the distribution of overpressure in different parts of the box girder under different explosion conditions shows that when the detonation core is located above the top of the box girder, the overpressure on the top surface of the box girder is larger; when the detonation core is located below the flange plate, the overpressure on the flange and web of the box girder is larger, and the overpressure on the other parts is smaller. The blast center is located under the bottom plate of the box girder, and the flange, web and bottom plate of the box girder are subjected to large shock wave overpressure, and the full section of the structure is greatly affected by the explosion. Finally, based on the experimental and numerical analysis results, the equation of the peak overpressure of the top plate, web plate and bottom plate of the box girder under different working conditions is fitted, and the load model of the key parts of the box girder under different explosion conditions is established.

Key words

prestressed concrete box girder / explosion test / numerical simulation / mechanism analysis / load model

Cite this article

Download Citations
SUN Qixin1, LIU Chao2. Experimental and finite element analysis of the explosion load model for prestressed concrete box girders[J]. Journal of Vibration and Shock, 2024, 43(14): 37-46

References

[1] Williams G D, Williamson E B. Procedure for Predicting Blast Loads Acting on Bridge Columns[J]. Journal of Bridge Engineering, 2012, 17(3): 490-499. [2] Shi Y, Hong H, Li Z X. Numerical simulation of blast wave interaction with structure columns[J]. Shock Waves, 2007, 17(1-2): 113-133. [3] Fujikura S, Bruneau M, Lopez-Garcia D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading[J]. Journal of Bridge Engineering, 2008, 13(6): 586-594. [4] Qasrawi Y, Heffernan P J, Fam A. Numerical Determination of Equivalent Reflected Blast Parameters Acting on Circular Cross Sections[J]. International Journal of Protective Structures, 2015, 6(1): 1-22. [5] E B W. Explosion in air[M]. Texas: University of Texas Press, 1973. [6] Henrych, Josef, Major R, et al. The Dynamics of Explosion and Its Use[M]. Amsterdam: Elseviser Scientific Publishing Company, 1979. [7] Gantes C J, Pnevmatikos N G. Elastic-plastic response spectra for exponential blast loading[J]. International Journal of Impact Engineering, 2004, 30(3): 323-343. [8] 李国强, 瞿海雁, 杨涛春, 等. 钢管混凝土柱抗爆性能试验研究[J]. 建筑结构学报, 2013, 34(12): 69-76. Li Guoqiang, Qu Haiyan, Yang Taochun, et al. Experimental study on antiknock performance of concrete-filled steel tube columns [J]. Journal of Building Structures, 2013, 34(12): 69-76. [9] Sherkar P, Whittaker A, Aref A. On the Influence of Charge Shape, Orientation and Point of Detonation on Air-Blast Loadings//[C] Glenn R. Bell, Matt A. Card. Structures Congress. Boston: Curran Associates, Inc., 2014: 68-73. [10] Smith P D, Rose T A. Blast wave propagation in city streets - an overview[J]. Progress in Structural Engineering and Materials, 2006, 8(1): 16-28. [11] Rose T A, Smith P D. Influence of the principal geometrical parameters of straight city streets on positive and negative phase blast wave impulses[J]. International Journal of Impact Engineering, 2002, 27(4): 359-376. [12] Remennikov A M, Rose T A. Modelling blast loads on buildings in complex city geometries[J]. Computers & Structures, 2005, 83(27): 2197-2205. [13] 丁阳, 陈晔, 师燕超. 室内爆炸超压荷载简化模型[J]. 工程力学, 2015, 32(3): 119-125. Ding Yang, Chen Ye, Shi Yanchao. Simplified model of overpressure loading caused by internal blast [J]. Engineering Mechanics, 2015, 32(3): 119-125. [14] 都浩, 李忠献, 郝洪. 建筑物外部爆炸超压荷载的数值模拟[J]. 解放军理工大学学报:自然科学版, 2007, 8(5): 413-418. Du Hao, Li Zhongxian, Hao Hong. Numerical simulation on blast overpressure loading outside buildings[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2007, 8(5): 413-418. [15] 洪武, 范华林, 徐迎, 等. 防爆墙迎爆面反射压力系数计算方法研究[J]. 振动与冲击, 2012, 31(19): 109-112. Hong Wu, Fan Hualin, Xu Ying, et al. Calculation method for reflected pressure coefficient of a blast wall [J]. Journal of Vibration and Shock, 2012, 31(19): 109-112. [16] 李鑫, 吴桂英, 贾昊凯. 挡墙对爆炸冲击波传播影响的数值模拟[J]. 工程力学, 2012, 29(2): 245-250. Li Xin, WU Guiying, JIA Haokai. Three-dimensional Numerical Value Simulation of Retailing Wall to the Blast Wave Propagating Influence [J]. Engineering Mechanics, 2012, 29(2): 245-250. [17] 吴彦捷, 高轩能. 爆炸冲击波数值模拟及超压计算公式的修正[J]. 华侨大学学报:自然科学版, 2014, 35(3): 321-326. Wu Yanjie, Gao Xuanneng. Numerical Simulation for Explosion Shock Waves and Correction of Calculation Formula of Overpressure [J]. Journal of Huaqiao University: Natural Science Edition, 2014, 35(3): 321-326. [18] 杨亚东, 李向东, 王晓鸣. 爆炸冲击波空中传播特征参量的优化拟合[J]. 爆破器材, 2014, 43(1): 13-18. Yang Yadong, Li Xiangdong, Wang Xiaoming. Optimum Fitting for Characteristic Parameters of Blast Shockwaves Traveling in Air [J]. Explosive Materials, 2014, 43(1): 13-18. [19]高超,宗周红,娄凡,等.预应力混凝土连续梁桥桥面爆炸荷载模型试验[J].中国公路学报, 2022, 35(12):9. Gao Gao, Zong Zhouhong, Lou Fan, et al. Load Model Experiment of Prestressed Concrete Continuous Girder Bridge Subjected to Explosion Above the Deck [J]. China Journal of Highway and Transportation, 2022, 35(12):9. [20]任飞.预制拼装混凝土箱型主梁抗爆性能的研究[D].南京:南京理工大学,2023. Ren Fei. Research on Anti-explosion performance of precast concrete box girder [D]. Nanjing: Nanjing University of Science and Technology, 2023. [21] 高轩能, 吴彦捷. TNT爆炸的数值计算及其影响因素[J]. 火炸药学报, 2015, 38(3): 32-39. Gao Xuanneng, Wu Yanjie. Numerical Calculation and Influence Parameters for TNT Explosion [J]. Journal of Explosives and Explosives, 2015, 38(3): 32-39. [22] Brode, Harold L. Blast Wave from a Spherical Charge[J]. Physics of Fluids, 1959, 2(2): 217. [23] Georgin J F, Reynouard J M. Modeling of structures subjected to impact: concrete behaviour under high strain rate[J]. Cement & Concrete Composites, 2003, 25(1): 131-143. [24] 李翼祺, 马素贞. 爆炸力学[M]. 北京: 科学出版社, 1992. Li Yiqi, Ma Suzhen. Explosion Mechanics [M]. Beijing: Science Press, 1992. [25] GB 50038-2019,人民防空地下室设计规范[S].北京:中国计划出版社,2019. GB 50038-2005, Codefor Design of Civil Air Defense Basement [S]. Beijing: China Planning Press, 2019. [26] JINWON S, ANDREW W. Blast-wave clearing for detonations of high explosives [J]. Journal of Structural Engineering, 2019, 145 (7): 04019049-1. [27] 刘自明. 桥梁结构模型试验研究[J]. 桥梁建设, 1999, (4): 1-7. Liu Ziming. Test Study of Bridge Structure Models [J]. Bridge Construction, 1999, (4): 1-7. [28] 易刚, 龚代瑜. 试论结构模型设计中的相似理论[J]. 国外建材科技, 2004, 25(5): 38-39. Yi Gang, Gong Daiyu.Discussion on similarity Theory in Structural model design [J]. Foreign Building Materials Science and Technology, 2004, 25(5): 38-39. [29] JTJ3362-2018,公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京:人民交通出版社,2018. JTJ3362-2018, Specifications for Design of Highway Reinforced Concreteand Prestressed Concrete Bridges and Culverts [S]. Beijing: China Communications Press, 2018. [30] GB/T 50152-2012,混凝土结构试验方法标准[S]. 北京:中国建筑工业出版社,1992. GB/T 50152-2012, Standard for test method of concrete structures [S]. Beijing: China Architecture & Building Press, 1992.
PDF(2964 KB)

Accesses

Citation

Detail

Sections
Recommended

/