Distribution law and test of dynamic stress during unloading rebound of slender truss boom

LIU Yang1, FU Ling2, LIU Yanbin2, YIN Li2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (15) : 251-260.

PDF(3298 KB)
PDF(3298 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (15) : 251-260.

Distribution law and test of dynamic stress during unloading rebound of slender truss boom

  • LIU Yang1, FU Ling2, LIU Yanbin2, YIN Li2
Author information +
History +

Abstract

To address the dynamic response changes of slender truss booms under unloading impact, a computation model for dynamic stress distribution of truss arms based on equivalent beam vibration mode function is proposed. Based on the equivalent beam vibration mode function, the assumption of dynamic stress distribution of the truss boom after unloading is explored, and the relevant parameters that affect the unloading rebound dynamic response of the truss boom is analyzed. A refined finite element model of the truss boom and a multi body model describing the rigid flexible coupling characteristics of the crane are established for a luffing jib tower crane equipped with slender truss boom. The key parameters of stress distribution theoretical model are identified through simulation. A series of load unloading and impact tests are carried on the luffing jib tower crane, and the error between the experimental values of the dynamic stress of the main chord on the slender truss boom and the theoretical calculation results is less than 7%, indicating that the theoretical model of the dynamic stress distribution of the truss boom is consistent with the actual situation. The dynamic stress distribution of the main chord on the truss boom under extreme working conditions is predicted through a theoretical model. It is found that the peak dynamic stress of the crane boom exceeded the structural bearing limit under maximum load unloading conditions, providing a basis for the optimization design of the key structure of the crane under unloading conditions.

Key words

Dynamic stress distribution model / mode function / truss boom / rigid flexible coupling model / unloading impact test

Cite this article

Download Citations
LIU Yang1, FU Ling2, LIU Yanbin2, YIN Li2. Distribution law and test of dynamic stress during unloading rebound of slender truss boom[J]. Journal of Vibration and Shock, 2024, 43(15): 251-260

References

[1] GB/T 13752-2017. 塔式起重机设计规范[S], 北京, 中国标准出版社, 2017. GB/T 13752-2017. Design rules for tower cranes[S], Beijing, Standards Press of China, 2017. [2] Qingle Yang, Fuzheng Qu, Zhiyuan Yu, et al. Stress and stability analysis of slewing motion for crawler crane [J]. Engineering Failure Analysis, 2019, 105: 817-827. [3] Z. Towarek. The dynamic stability of a crane standing on soil during the rotation of the boom [J]. International Journal of Mechanical Science,1998, 40 (6):557–574. [4] F. Ju, Y.S. Choo, F.S. Cui. Dynamic response of tower crane induced by the pendulum motion of the payload [J]. International Journal of Solids and Structures, 2006, 43(2): 376-389. [5] F. Ju , Y.S. Choo. Super element approach to cable passing through multiple pulleys [J]. International Journal of Solids and Structures 2005,42 (11–12), 3533–3547. [6] 李伟, 杨晨, 王桂录, 等.基于瞬态动力学强夯机臂架折弯事故分析[J].中国工程机械学报,2020,2: 184-188. Li Wei, Yang Chen, Wang Guilu, et al.. Based on transient analysis of an accident of arm structure [J]. Chinese Journal of Construction Machinery, 2020, 2: 184-188. [7] A. Rauch, W. Singhose, D. Fujioka, T. Jones, Tip-over stability analysis of mobile boom cranes with swinging payloads[J].Journal of Dynamic Systems Measurement & Control,2013,135 (3), 031008. [8] 钱长照,陈得良.振型函数拟合方法求解移动荷载作用下连续梁的响应[J].动力学与控制学报,2010,8(03):263-266. Qian Chang-zhao, Chen De-liang. Solving the response of continuous bridge using the modal function of fit [J].Journal of Dynamics and Control, 2010,8(03):263-266. [9] 周坤涛,杨涛,葛根.基于新型振型函数的渐细变截面悬臂梁的自由振动理论与实验研究[J].工程力学,2020,37(03):28-35. ZHOU Kun-tao, YANG Tao, GE Gen. Theoretical and experimental study on free vibration of cantilever tapered beam base on new modal function [J]. Engineering Mechanics, 2020,37(03):28-35. [10] 周坤涛,杨涛,葛根等.基于Bessel和Meijer-G函数的楔形和锥形悬臂梁振动分析[J].振动与冲击,2022,41(04):253-261. ZHOU Kuntao,YANG Tao,GE Gen,HAO Shuying, ZHANG Qichang. Vibration analysis of wedge and cone cantilever beams based on Bessel and Meijer-G functions[J]. Journal of Vibration and Shock, 2022,41(04):253-261. [11] 周朝阳,周云峰.蜂窝梁等效抗弯刚度的确定方法[J].建筑科学与工程学报,2008, 84(01):102-106+115. ZHOU Chao-yang, ZHOU Yun-feng. Confirm method of equivalent bending rigidity of castellated beams [J]. Journal of Architecture and Civil Engineering,2008, 84(01):102-106+115. [12] 商越,张昱,冯新等.仿真混凝土动弹性模量的悬臂梁法试验研究[J].水利与建筑工程学报,2022,20(03):35-40+185. SHANG Yue, ZHANG Yu, FENG Xin, REN Xianqi, ZHANG Haojie. Experimental Research for Testing Dynamic Young’s Modulus of Simulation Concrete[J]. Journal of Water Resources and Architectural Engineering, 2022,20(03): 35-40+185. [13] 胡文华,高家旺,冯晶晶,朱东方,曹东兴,吴瑞琴. 三棱直线桁架的连续体等效及承载特性研究[J],工程力学,2023,40(3):238-244. HU Wen-hua, GAO Jia-wang, FENG Jing-jing, ZHU Dong-fang, CAO Dong-xing, WU Rui-qin. Continuum equivalence and bearing characteristics of a tri-prism straight truss [J]. Engineering Mechanics, 2023, 40(3):238-244. [14] LIU M, CAO D Q, ZHU D F. Coupled vibration analysis for equivalent dynamic model of the space antenna truss [J]. Applied Mathematical Modelling, 2021, 89: 285 -295. [15] 祝卫亮,葛耀君.悬索桥桁架加劲梁动力等效成等截面欧拉梁方法[J].哈尔滨工业大学学报,2020(52)9:17-24. ZHU Weiliang, GE Yaojun. Simplified method for dynamic equivalent Euler beam of truss girder in suspension bridge [J]. Journal of Harbin Institute of Technology, 2020(52)9:17-24. [16] 李春光,陈政清,张志田.大跨度桁式加劲梁悬索桥气弹模型等效设计[J].振动与冲击,2009,28(09):171-174+187+222. Li Chun-guang, Chen Zheng-qing, Zhang Zhi-tian. Equivalent design of aeroelastic model for along–span suspension bridge with truss stiffening girder [J]. Journal of Vibration and Shock,2009,28(09):171-174+187+222. [17] 汪若尘,黄欢,孟祥鹏. 基于虚拟样机模型的液压ISD悬架动态性能分析[J]. 机械工程学报, 2015, 51(10): 137-142. Wang Ruo-chen, Huang Huan, Meng Xiang-peng. Dynamic performance analysis of hydraulic ISD suspension based on virtual prototype model [J]. Journal of Mechanical Engineering, 2015, 51(10): 137-142. [18] 李东,杨云飞,胡鹏翔等.运载火箭多体动力学建模与仿真技术研究[J].宇航学报,2021,42(02):141-149. LI Dong, YANG Yun-fei, HU Peng-xiang, ZHANG Huan3, CHENG Xing. Research on multibody dynamic modeling and simulation technology for launch vehicles [J]. Journal of Astronautics,2021,42(02):141-149. [19] 徐齐, 王欣, 王殿龙. 大型履带起重机防后倾系统机液耦合动力学分析[J]. 液压与气动, 2017(9): 92-97. Xu Qi, Wang Xin, Wang Dian-long. Hydraulic-mechanical coupling dynamic analysis on anti-dumping system of large scale crane[J]. Chinese Hydraulics & Pneumatics, 2017(9): 92-97. [20] Zhongyuan Kang, GeNing Xu, Heng Yang, et al. Research on dynamic properties of crane boom under the condition of accidental unloading [J]. Advances in Engineering Research, 2016, 103: 576-584. [21] 屈福政, 刘海涛. 履带起重机臂架后倾动力学仿真[J]. 起重运输机械, 2005, 12: 40-43. Qu Fuzheng, Liu Haitao. Backward tilting dynamics simulation of crawler crane [J]. Hoisting and Conveying Machinery, 2005, 12: 40-43. [22] Andersson H., Simonsson K., Hilding D.,Schill M., Sigfridsson E., Leidermark D.. Validation of a co-simulation approach for hydraulic percussion units applied to a hydraulic hammer [J]. Advances in Engineering software, 2019, 131: 102-115. [23] 刘洋.大型起重机柔性卸载方法研究[J].振动与冲击,2022,41(7):207-213. LIU Yang. Research on flexible unloading method of large crane[J].Journal of Vibration and Shock, 2022,41(7):207-213. [24] F. Ju, Y.S.Choo. Dynamic analysis of tower cranes[J]. ASCE Journal of Engineering Mechanics, 2005, 131(1): 88-96. [25] Wei Chen, Xianrong Qin, Zhigang Yang. Wind-induced tower crane vibration and safety evaluation[J]. Journal of low frequency noise vibration and active control. 2020, 39(2): 297-312.
PDF(3298 KB)

Accesses

Citation

Detail

Sections
Recommended

/