Structural excitation identification and response reconstruction based on IAAKF algorithm

YIN Hong, DING Yiyuan, PENG Zhenrui, LI Xinyu

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (15) : 302-310.

PDF(2665 KB)
PDF(2665 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (15) : 302-310.

Structural excitation identification and response reconstruction based on IAAKF algorithm

  • YIN Hong, DING Yiyuan, PENG Zhenrui, LI Xinyu
Author information +
History +

Abstract

In order to address the problem that the traditional Kalman filter (KF) algorithm needs to know the external excitation of the structure and preset the a priori constant noise variance when it is practically applied to response reconstruction, a structural excitation identification and response reconstruction method based on the IAAKF (Innovation-based Adaptive Augmented Kalman Filter) algorithm is proposed. Firstly, based on the augmented state space model, the external excitation vector and the state vector are combined to form the augmented state vector, and adaptively adjust the Kalman filter gain and state estimation error covariance matrix in real-time based on the statistical characteristics of augmented innovation; Secondly, using only the accelerometer to identify the hammer excitation based on the modal method, and reconstructing data such as acceleration, velocity, displacement, and strain response; Finally, numerical simulation and experimental analysis are carried out for the crane truss and simply supported girder, respectively. The results show that the proposed method can effectively adaptively adjust the noise variance and recognize the external excitation of the structure to realize the structural response reconstruction.

Key words

noise variance / excitation identification / innovation statistics / augmented kalman filter / structural response reconstruction

Cite this article

Download Citations
YIN Hong, DING Yiyuan, PENG Zhenrui, LI Xinyu. Structural excitation identification and response reconstruction based on IAAKF algorithm[J]. Journal of Vibration and Shock, 2024, 43(15): 302-310

References

[1] FURKAN L, ONUR A, F. NECATI C. Improved undamaged-to-damaged acceleration response translation for Structural Health Monitoring[J]. Engineering Applications of Artificial Intelligence, 2023, 122, 106146. [2] BAO Y Q, CHEN Z C, WEI S Y, et al. The state of the art of data science and engineering in structural health monitoring[J]. Engineering, 2019, 5: 234-242. [3] 董康立, 殷红, 彭珍瑞. 面向多类型传感器优化布置的结构响应重构[J]. 控制理论与应用, 2018, 35(9): 1339-1346. DONG Kang-li, YIN Hong, PENG Zhen-rui. Structural response reconstruction oriented to optimal multi-type sensor placement[J]. Control Theory and Applications, 2018, 35(9): 1339-1346. [4] 李惠, 鲍跃全, 李顺龙, 等. 结构健康监测数据科学与工程[J]. 工程力学, 2015, 32(8): 1-7. LI Hui, BAO Yue-quan, LI Shun-long, et al. Data science and engineering for structural health monitoring[J]. Engineering Mechanics, 2015, 32(8): 1-7. [5] WANG J, LAW S S, YANG Q S. Sensor placement method for dynamic response reconstruction[J]. Journal of Sound and Vibration, 2014, 333(9): 2469-2482. [6] 骆勇鹏, 王林堃, 郭旭, 等.利用单传感器数据基于GAF-CNN的结构损伤识别[J]. 振动.测试与诊断, 2022, 42(01): 169-176+202-203. LUO Yong-peng, WANG Lin-kun, GUO Xu, et al. GAF-CNN-based structural damage recognition using single sensor data[J]. Vibration. Test and Diagnosis, 2022, 42(01): 169-176+202-203. [7] Law S S, Li J, Ding Y. Structural response reconstruction with transmissibility concept in frequency domain[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 952-968. [8] Law J, L S. Substructural response reconstruction in wavelet domain[J]. Journal of Applied Mechanics, 2011, 78(4): 41010-41010. [9] Wan Z, Li S, Huang Q, et al. Structural response reconstruction based on the modal superposition method in the presence of closely spaced modes[J]. Mechanical Systems and Signal Processing, 2014, 42(1-2): 14-30. [10] He J, Guan X, Liu Y. Structural response reconstruction based on empirical mode decomposition in time domain[J]. Mechanical Systems and Signal Processing, 2012, 28(2): 348-366. [11] Wang J, Law S S, Yang Q S. Sensor placement method for dynamic response reconstruction[J]. Journal of Sound and Vibration, 2014, 333(9): 2469-2482. [12] 王娟, 杨庆山. 基于状态空间的时域动态响应重构方法[J]. 建筑结构学报, 2016, 37(S1): 460-466. WANG Juan, YANG Qing-shan. State-space-based time-domain dynamic response reconstruction method[J]. Journal of Building Structures, 2016, 37(S1): 460-466. [13] 张笑华, 任伟新, 方圣恩. 两种传感器的位置优化及结构多种响应重构[J]. 振动与冲击, 2014, 33(18): 26-30. ZHANG Xiao-hua, REN Wei-xin, FANG Sheng-en. Position optimization and structural multi-response reconstruction of two sensors[J]. Vibration and Shock, 2014, 33(18): 26-30. [14] 史鹏程, 彭珍瑞, 董康立. 基于有限测量信息的两步响应重构方法[J]. 振动与冲击, 2022, 41(11): 291-297. SHI Peng-cheng, PENG Zhen-rui, DONG Kang-li. A two-step response reconstruction method based on limited measurement information[J]. Vibration and Shock, 2022, 41(11): 291-297. [15] WEI D, LI D, HUANG J. Improved force identification with augmented Kalman filter based on the sparse constraint[J]. Mechanical Systems and Signal Processing, 2022:167. [16] ZHANG X H, WU Z B. Dual-Type structural response reconstruction based on moving-window kalman filter with unknown measurement noise[J]. Journal of Aerospace Engineering, 2019, 32(4): 04019029. [17] 张笑华, 吴志彪, 吴圣斌, 等. 基于移动窗卡尔曼滤波算法的结构响应重构[J]. 振动与冲击, 2021, 40(21): 90-96+105. Zhang X H, Wu Z B, Wu S B, et al. Structural response reconstruction based on moving window Kalman filtering algorithm[J]. Journal of Vibration and Shock, 2021, 40(21):90-96+105. [18] 张志勇, 张淑芝, 黄彩霞, 等. 基于自适应扩展卡尔曼滤波的分布式驱动电动汽车状态估计[J]. 机械工程学报, 2019, 55(6): 156-165. ZHANG Zhi-yong, ZHANG Shu-zhi, HUANG Cai-xia, et al. State estimation of distributed drive electric vehicle based on adaptive extended Kalman Filter[J]. Journal of Mechanical Engineering, 2019, 55(6): 156-165. [19] 杨恒占, 王盛博, 何红丽. 未知噪声协方差的自适应容积卡尔曼滤波[J]. 空军工程大学学报(自然科学版), 2021, 22(02): 42-47. YANG Hengzhan, WANG Shengbo, HE Hongli. Adaptive Cubature Kalman Filter Based on Unknown Noise Covariance[J]. Journal of Air Force Engineering University (Natural Science Edition). 2021, 22(2): 42-47. [20] KIM K H,LEE J G,PARK C G. Adaptive two-stage extended kalman filter for a fault-tolerant INS-GPS loosely coupled system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1): 125-137. [21] WANG X,YOU Z,ZHAO K. Inertial/celestial-based fuzzy adaptive unscented Kalman filter with Covariance Intersection algorithm for satellite attitude determination[J]. Aerospace Science and Technology, 2016, 48: 214-222. [22] 王学斌, 徐建宏, 张章. 卡尔曼滤波器参数分析与应用 方法研究[J]. 计算机应用与软件, 2012, 29(6): 212-215. WANG Xue-bin, XU Jian-hong, ZHANG Zhang Research on parameter analysis and application method of Kalman filter[J]. Computer Applications and Software, 2012, 29(6): 212-215. [23] ZHANG Z, MENG S P, ZHOU Z, et al. Numerical integration method of acceleration recodes for shaking table test[J]. Journal of Vibration, Measurement and Diagnosis, 2013, 33(4): 627-633.
PDF(2665 KB)

145

Accesses

0

Citation

Detail

Sections
Recommended

/