ence of spindle vibration of screw milling machine on surface quality of a screw rotor

LIN Zeli1,2,SUN Xingwei1,2,YANG Heran1,2,ZHANG Weifeng1,2,DONG Zhixu1,2,ZHAO Hongxun1,2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (16) : 185-191.

PDF(2185 KB)
PDF(2185 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (16) : 185-191.

ence of spindle vibration of screw milling machine on surface quality of a screw rotor

  • LIN Zeli1,2,SUN Xingwei1,2,YANG Heran1,2,ZHANG Weifeng1,2,DONG Zhixu1,2,ZHAO Hongxun1,2
Author information +
History +

Abstract

To investigate the influence of spindle vibration on the surface quality of workpieces in screw milling machines. A neural network model for predicting the vibration characteristics of the main shaft is established through experiments on the outer envelope milling of screw rotors. The prediction model is used to predict and analyze the changes in the vibration characteristics of the main shaft under different processing parameters, and to analyze the influence of the main shaft vibration on the surface roughness value of the workpiece. The IEPE (Piezoelectric Integrated Circuit) type acceleration sensor is used to measure the characteristic values of spindle vibration during the milling process, and the TR200 portable surface roughness meter is used to measure the surface roughness value of the workpiece. Grey correlation analysis is conducted on the characteristic values of spindle vibration and surface roughness values, and the results show a significant relationship between signal peak and surface roughness values. The surface roughness value decreased with the decrease of signal peak. Particle swarm optimization algorithm is used to optimize process parameters in the constructed spindle vibration prediction model. The accuracy of the model is verified by actual processing, and the results show that the error of the model is within 6% .The actual processing test results show that the peak value of the spindle vibration signal can be reduced and higher surface quality could be obtained by using the optimal parameter. The method proposed in this article has certain inspiration and guiding significance for the selection of practical production processes for screw rotors, and can also provide reference for improving the surface quality of metal cutting.

Key words

outer envelope milling / spindle vibration / surface roughness / neural network prediction

Cite this article

Download Citations
LIN Zeli1,2,SUN Xingwei1,2,YANG Heran1,2,ZHANG Weifeng1,2,DONG Zhixu1,2,ZHAO Hongxun1,2. ence of spindle vibration of screw milling machine on surface quality of a screw rotor[J]. Journal of Vibration and Shock, 2024, 43(16): 185-191

References

[1] 彭程宇,谢 佳,冯全科,等. 两级单螺杆压缩机气体阻力矩变化特性研究[J]. 西安交通大学学报,2022, 56(2): 82-90. PENG Cheng-yu, XIE Jia, FENG Quan-ke, et al. A study of gas resistance torque variation characteristics of two-stage single screw compressors[J]. Journal of Xi'an Jiaotong University, 2022, 56(2): 82-90. [2] 杨赫然,何 源,孙兴伟,等. 螺杆转子砂带磨削装置开发及材料去除率预测[J]. 中国机械工程,2021, 32(17): 2055-2062. YANG He-ran, HE Yuan, SUN Xing-wei, et al. Development of belt grinding devices for screw rotor and prediction of material removal rates[J]. China Mechanical Engineering 2021, 32(17): 2055-2062. [3] 巫修海,陈文华,张宝夫. 螺杆真空泵自平衡螺杆转子优化设计[J]. 振动与冲击,2015,34(19):144-149+156. WU Xiu-hai, CHEN Wen-hua, ZHANG Bao-fu. Optimization design of screw rotor with automatic dynamic balance of a screw vacuum pump[J]. Journal of Vibration and Shock, 2015, 34(19): 144-149+156. [4] He B F,Ding S Y,Shi Z Y. A comparison between profile and areal surface roughness parameters[J]. Metrology and Measurement Systems,2021,28(3):413-438. [5] Meng H,Liu G. Novel Method for Evaluating Three-Dimensional Surface Roughness Based on Grey Relational Analysis[J]. Journal of Testing and Evaluation,2019,47(1):424-438. [6] 郭国强,杨博宇,李建华,等. 基于切削运动学分析的铣削加工表面粗糙度预测方法研究[J]. 机械工程学报,2023, 59(13): 314-324. GUO Guo-qiang, YANG Bo-yu, LI Jian-hua, et al. Study on the prediction method of milling surface roughness based on cutting kinematics analysis[J]. Journal of Mechanical Engineering,2023,59(13):314-324. [7] Duan C Z,Sun W,Feng Z,et al. Defects formation mechanism and evaluation of surface roughness in machining Al/SiCp composites[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2018,12(1):JAMDSM0005. [8] Yang T,Liu T T,Liao W H,et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting[J]. Journal of Materials Processing Technology,2019,266:26-36. [9] 雷 勇,赵 威,何 宁,等. TC17钛合金低温铣削表面粗糙度预测[J]. 中国机械工程,2022, 33(5): 583-588. LEI Yong, ZHAO Wei, HE Ning, et al. Prediction of surface roughness for cryogenic milling TC17 titanium alloys[J]. China Mechanical Engineering, 2022, 33(5): 583-588. [10] 冯吉路,孙志礼,赵 坚,等. 基于AK-MCS法的主轴系统振动可靠性分析[J]. 振动与冲击,2019, 38(18): 135-140. FENG Ji-lu, SUN Zhi-li, ZHAO Jian, et al. Vibration reliability analysis on a spindle system based on AK-MCS method [J]. Journal of Vibration and Shock, 2019, 38(18): 135-140. [11] 李 杰,黄元俊,张 斌,等. 盘形滚刀垂向振动特性分析与试验[J]. 振动与冲击,2020, 39(9): 201-206+234. LI Jie, HUANG Yuan jun, ZHANG Bin, et al. Analysis and experiment on the vertical vibration characteristics of a disc cutter[J]. Journal of Vibration and Shock, 2020, 39(9): 201-206+234. [12] 胡 杰,鄂林仲阳,肖世富,等. 振动试验中非一致基础激励行为的表征与量化[J]. 振动.测试与诊断,2022, 42(3): 524-529+618-619. HU Jie, ELIN Zhong-yang, XIAO Shi-fu, et al. Characterization and quantization research of non-uniform base excitation in vibration test[J]. Journal of Vibration,Measurement & Diagnosis, 2022, 42(3): 524-529+618-619. [13] 史丽晨,杨 旭,王海涛,等. TC4切削动态特性及粗糙度形成动力学机理研究[J]. 兵器材料科学与工程,2021, 44(3): 82-88. SHI Li-chen, YANG Xu, WANG Hai-tao, et al. Research on cutting dynamic characteristics of titanium alloy and formation dynamic mechanism of surface roughness[J]. Ordnance Material Science and Engineering, 2021, 44(3): 82-88. [14] 戚朋. 螺旋曲面铣削力建模及表面质量预测研究[D]. 沈阳:沈阳工业大学,2022. [15] 杨赫然,耿超绪,孙兴伟,等. 基于隐式Adams方法的螺旋曲面铣削系统稳定性预测研究[J]. 振动与冲击,2022, 41(16): 158-166+277. YANG He-ran, GENG Chao-xu, SUN Xing-wei, et al. A study on the prediction of a spiral surface milling system stability based on the implicit Adams method[J]. Journal of vibration and shock, 2022, 41(16): 158-166+277. [16] 卢兆麟,宋浩. 基于视觉动力-灰色关联分析的车身造型形态进化机制研究[J]. 北京理工大学学报,2023, 43(09): 903-911. LU Zhao-lin, SONG Hao. Evolution mechanism of vehicle styling based on visual dynamics-gray correlation analysis[J]. Transactions of Beijing Institute of Technology, 2023, 43(09): 903-911. [17] Landry P,Webb R. Pairwise normalization: A neuroeconomic theory of multi-attribute choice[J]. Journal of Economic Theory,2021,193:105221. [18] 杨 颖,苏 翔,王志英,等. 基于灰色关联度的船舶分段焊接定额工时估算方法研究[J]. 中国造船,2021, 62(02): 236-244. YANG Ying, SU Xiang, WANG Zhi-ying, et al. Research on estimation method of hull blocks welding man-hour based on grey correlation analysis[J]. Shipbuilding of China,2021, 62(02): 236-244. [19] Kong W C,Dong Z Y,Jia Y W,et al. Short-term residential load forecasting based on LSTM recurrent neural network [J]. IEEE transactions on smart grid,2017,10(1):841-851. [20] Yu Y,Si X S,Hu C H,et al. A review of recurrent neural networks: LSTM cells and network architectures [J]. Neural computation,2019,31(7):1235-1270. [21] Wang D S,Tan D P,Liu L. Particle swarm optimization algorithm: an overview [J]. Soft computing,2018,22:387-408. [22] 李昌龙,陈 松,吴炫炫,等. 基于PSO-ELM的316L不锈钢细长管磁粒研磨内表面粗糙度预测模型[J]. 中国表面工程,2023, 36(2): 212-221. LI Chang-long, CHEN Song, WU Xuan-xuan, et al. Inner surface roughness prediction model of 316L stainless steel slender tube by magnetic abrasive finishing based on PSO-ELM[J]. China Surface Engineering, 2023, 36(2): 212-221. [23] 文 成,周传德. 基于灰色关联度的形态滤波及滚动轴承故障诊断中应用[J]. 振动与冲击,2015, 34(14): 51-55. WEN Cheng, ZHOU Chuan-de. Morphological filter based on grey relational degree and its application in rolling bearing fault diagnosis[J]. Journal of Vibration and Shock, 2015, 34(14): 51-55. [24] Liu G,Zhu H Q. Displacement estimation of six-pole hybrid magnetic bearing using modified particle swarm optimization support vector machine [J]. Energies,2022,15(5):1610.
PDF(2185 KB)

Accesses

Citation

Detail

Sections
Recommended

/