Blast damage to sandstone of top slab under triaxial graded cyclic loading and an unloading experimental study on energy dissipation

WANG Mengxiang1, WANG Hao1, MA Shoulong1, 2, ZONG Qi1, WANG Haibo1, XU Ying1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (16) : 227-237.

PDF(3041 KB)
PDF(3041 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (16) : 227-237.

Blast damage to sandstone of top slab under triaxial graded cyclic loading and an unloading experimental study on energy dissipation

  • WANG Mengxiang1, WANG Hao1, MA Shoulong1,2, ZONG Qi1, WANG Haibo1, XU Ying1
Author information +
History +

Abstract

In order to investigate the evolution of energy dissipation under cyclic loading and unloading of sandstone damaged by blasting load in different circumferential pressure environments, graded cyclic loading and unloading tests were carried out on three sandstone specimens with different damage degrees under different circumferential pressures by using a triaxial test loading device system, and the fine structure of the specimens with different damage degrees was obtained by combining with electronic digital microscopy. The effects of blasting load damage, confining pressure and loading series on energy dissipation and fracture morphology are analyzed. The results show that: 1) The blasting load action will cause damage to the rock body, the peak strength reduction of vibration damage and blasting damage specimens under uniaxial compression load is 5.53% and 18.87% respectively. The uniaxial graded cyclic loading and unloading degrades the undamaged and vibration-damaged specimens, and strengthens the blasting damage specimens. 2) The extent of damage to the proximal end of the detonation cord is higher, the first damage occurs under the action of external loading, the existence of the surrounding pressure significantly reduces the degree of rupture and fragmentation of the specimen, the specimen is shear, tensile and crushing damage multiple modes coexist. 3) In the process of cyclic loading and unloading, the total energy and plastic deformation energy obtained by the specimen reached the maximum at the first cyclic loading, and the plastic deformation energy and dissipated energy of the specimen showed a decreasing trend as the number of cycles increased. The increase of the circumferential pressure and the number of cyclic loading stages makes the specimen increase in each energy during the cyclic loading process. 4) The energy consumption ratio of Ⅱ-level cyclic loading and unloading specimens is lower than that of Ⅲ-level and Ⅰ-level in the process of graded cyclic loading and unloading. Blast damage, vibration damage and undamaged specimens in the Ⅰ, Ⅱ, Ⅲ cycle in the process of loading and unloading the average value of energy consumption ratio were 15.73%, 12.47%, 13.95%, 13.49%, 12.44%, 13.46%, 12.07%, 8.69%, 11.56%. Blasting load damage changes the internal structure of the rock mass making the energy dissipation percentage of the specimen more significant under cyclic loading and unloading action.

Key words

blast damage / roof sandstone / hierarchical cyclic loading and unloading / peak intensity / fracture morphology / energy dissipation / energy consumption ratio

Cite this article

Download Citations
WANG Mengxiang1, WANG Hao1, MA Shoulong1, 2, ZONG Qi1, WANG Haibo1, XU Ying1. Blast damage to sandstone of top slab under triaxial graded cyclic loading and an unloading experimental study on energy dissipation[J]. Journal of Vibration and Shock, 2024, 43(16): 227-237

References

[1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1 283-1 305.(XIE Heping. Research progress of mechanics and mining theory of deep rock mass[J]. Journal of China Coal Society,2019,44 (5):1 283-1 305.(in Chinese)) [2] 翟新献,翟俨伟,刘勤裕,等. 冲击作用下含水煤样能量吸收和耗散规律及本构关系研究[J]. 振动与冲击,2023,42(6):202-211.(ZHAI Xinxian,ZHAI Yanwei,LIU Qinyu,et al. Energy absorption and dissipation and the constitutive relation of water-bearing coal specimens under impact load[J]. Journal of Vibration and Shock,2023,42(6):202-211. (in Chinese)) [3] 郭金刚,李耀晖,石松豪,等. 厚硬基本顶切顶卸压成巷及围岩控制技术[J]. 煤炭学报,2021,46(9):2 853-2 864.(GUO Jingang,LI Yaohui,SHI Songhao,et al. Thick hard basic top cutting top pressure relief formation and surrounding rock control technology[J]. Journal of China Coal Society,2021,46(9):2 853-2 864.(in Chinese)) [4] 高玉兵,杨军,张星宇,等. 深井高应力巷道定向拉张爆破切顶卸压围岩控制技术研究[J]. 岩石力学与工程学报,2019,38(10):2 045-2 056.(GAO Yubing,YANG Jun,ZAHNG Xinyu,et al. Research on the control technology of deep shaft high stress roadway directional tension blasting cutting top and unloading pressure surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):2 045-2 056.(in Chinese)) [5] 赵善坤. 深孔顶板预裂爆破与定向水压致裂防冲适用性对比分析[J]. 采矿与安全工程学报,2021,38(4):706-719.(ZHAO Shankun. A comparative analysis of deep hole roof pre-blasting and directional hydraulic fracture for rockburst control[J]. Journal of Mining & Safety Engineering,2021,38(4):706–719.(in Chinese)) [6] 潘俊锋,刘少虹,高家明,等. 深部巷道冲击地压动静载分源防治理论与技术[J]. 煤炭学报,2020,45(5):1 607-1 613.(PAN Junfeng,LIU Shaohong,GAO Jiaming,et al. Theory and technology of prevention and control of dynamic and static load in deep roadway impact ground pressure[J]. Journal of China Coal Society,2020,45(05):1 607-1 613.(in Chinese)) [7] 杨二朋,杨强胜,蔚立元,等. 爆破后砂岩力学性质的三轴压缩试验研究[J]. 金属矿山,2017,No. 490(4):45-51.(YANG Erpeng,YANG Qiangsheng,WEI Liyuan,et al. Triaxial compression test study of mechanical properties of sandstone after blasting[J]. Metal Mine,2017,No. 490(4):45-51.(in Chinese)) [8] 朱和玲,周科平,张亚民,等. 基于核磁共振技术的岩体爆破损伤试验研究[J]. 岩石力学与工程学报,2013,32(7):1 410-1 416.(ZHU Heling,ZHOU Keping,ZHANG Yamin,et al. Experimental study of rock blasting damage based on nuclear magnetic resonance technology[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(7):1 410-1 416.(in Chinese)) [9] 温森,吴斐,李胜,等. 冲击荷载下强度比对类复合岩样能量耗散影响的研究[J]. 振动与冲击,2023,42(13):111-118.(WEN Sen,WU Fei,LI Sheng,et al. Effects of strength ratio on energy dissipation of quasi-composite rock samples under impact load[J]. Journal of Vibration and Shock,2023,42(13):111-118.(in Chinese)) [10] 吴再海,宋朝阳,谭杰,等. 不同分级循环加卸载模式下岩石能量演化规律研究[J]. 采矿与安全工程学报,2020,37(4):836-844+851.(WU Zaihai,SONG Chaoyang,TAN Jie,et al. Study on the energy evolution of rocks under different graded cycle loading and unloading modes[J]. Journal of Mining & Safety Engineering,2020,37(4):836-844+851.(in Chinese)) [11] 刘汉香,别鹏飞,李欣,等. 三轴多级循环加卸载下千枚岩的力学特性及能量耗散特征研究[J]. 岩土力学,2022,43(S2):265-274+281.(LIU Hanxiang,BIE Pengfei,LI Xin,et al. Study on the mechanical properties and energy dissipation characteristics of kilimite under triaxial multi-stage cyclic loading and unloading[J]. Rock and Soil Mechanics,2022,43(S2):265-274+281.(in Chinese)) [12] 孟庆彬,王从凯,黄炳香,等. 三轴循环加卸载条件下岩石能量演化及分配规律[J]. 岩石力学与工程学报,2020,39(10):2 047-2 059.(MENG Qingbin,WANG Congkai,HUANG Bingxiang,et al. Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(10):2 047-2 059.(in Chinese)) [13] 苗胜军,刘泽京,赵星光,等. 循环荷载下北山花岗岩能量耗散与损伤特征[J]. 岩石力学与工程学报,2021,40(5):928-938.(MIAO Shengjun,LIU Zejing,ZHAO Xingguang,et al. Energy dissipation and damage characteristics of North Mountain granite under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5):928-938.(in Chinese)) [14] 李欣慰,姚直书,黄献文,等. 循环加卸载下砂岩变形破坏特征与能量演化研究[J]. 岩土力学,2021,42(6):1 693-1 704.(LI Xinwei,YAO Zhishu,HUANG Xianwen,et al. Deformation damage characteristics and energy evolution of sandstone under cyclic loading and unloading[J]. Rock and Soil Mechanics,2021,42(6):1 693-1 704.(in Chinese)) [15] 徐颖,李成杰,郑强强,等. 循环加卸载下泥岩能量演化与损伤特性分析[J]. 岩石力学与工程学报,2019,38(10):2 084-2 091.(XU Ying,LI Chengjie,ZHENG Qiangqiang,et al. Energy evolution and damage characteristics of mudstone under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):2 084-2 091.(in Chinese)) [16] 贾蓬,王茵,李博,等. 高温遇水冷却岩石循环加卸载力学性能试验研究[J]. 北京理工大学学报,2023,43(2):126-134.(JIA Peng,WANG Yin,LI Bo,et al. Experimental study on mechanical properties of high-temperature water-cooled rocks with cyclic unloading[J]. Transactions of Beijing Institute of Technology,2023,43(2):126-134.(in Chinese)) [17] 秦庆词,李克钢,李明亮,等. 非均质性岩石材料损伤失效准则及其失效行为研究[J]. 岩石力学与工程学报,2021,40(09):1 812-1 825.(QIN Qingci,LI Kegang,LI Mingliang,et al. Failure criterion and failure behavior of heterogeneous rock materials[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):2 084-2 091.(in Chinese)) [18] 李博,朱强,张丰收,等. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究[J]. 岩石力学与工程学报,2021,40(6):1 119-1 131.(LI Bo,ZHU Qiang,ZHANG Feishou,et al. Study of double crack extension pattern of non-homogeneous rocks based on mineral crystal model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1 119-1 131.(in Chinese)) [19] 文志杰,田雷,蒋宇静,等. 基于应变能密度的非均质岩石损伤本构模型研究[J]. 岩石力学与工程学报,2019,38(7):1 332-1 343.(WEN Zhijie,TIAN Lei,JIANG Yujing,et al. Study of damage intrinsic model for non-homogeneous rocks based on strain energy density[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(7):1 332-1 343.(in Chinese)) [20] 任洋,吴云峰. 不同循环加卸载速率下砂岩的力学特性研究[J]. 有色金属工程,2022,12(11):111-119.(REN Yang,WU Yunfeng. Mechanical properties of sandstone under different cyclic loading and unloading rates[J]. Nonferrous Metals Engineering,2022,12(11):111-119.(in Chinese)) [21] 宋宇宁,曾亚武. 三轴多级循环加卸载下红砂岩强度与变形特征试验研究[J]. 粉煤灰综合利用,2022,36(6):7-14.(SONG Yuning,ZENG Yawu. Experimental study on strength and deformation characteristics of red sandstone under triaxial multi-stage cyclic loading and unloading[J]. Fly Ash Comprehensive Utilization,2022,36(6):7-14.(in Chinese)) [22] 张俊文,宋治祥. 深部砂岩三轴加卸载力学响应及其破坏特征[J]. 采矿与安全工程学报,2020,37(2):409-418+428.(ZHANG Junwen,SONG Zhixiang. Mechanical response and failure characteristics of deep sandstone under triaxial loading and unloading[J]. Journal of Mining & Safety Engineering,2020,37(2):409-418+428.(in Chinese)) [23] 杨大方,张丁元,牛双建,等. 预制裂隙细砂岩裂纹扩展过程及宏观破坏模式单轴压缩试验研究[J]. 采矿与安全工程学报,2019,36(4):786-793.(YANG Dafang,ZHANG Dingyuan,NIU Shuangjian,et al. Experimental study on crack propagation process and macroscopic failure mode of prefractured fine sandstone under uniaxial compression[J]. Journal of Mining & Safety Engineering,2019,36(4):786-793.(in Chinese)) [24] 张培森,许大强,张睿,等. 不同围压及循环载荷下砂岩的渗流、力学特性试验研究[J]. 岩石力学与工程学报,2022,41(12):2 432-2 450.(ZHANG Peisen,XU Daqiang,ZHANG Rui,et al. Experimental study on seepage and mechanical properties of sandstone under different confining pressures and cyclic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(12):2 432-2 450.(in Chinese)) [25] 王云飞,王立平,焦华喆,等. 不同围压下砂岩的变形力学特性与损伤机制[J]. 煤田地质与勘探,2015,43(4):63-68.(WANG Yunfei,WANG Liping,JIAO Huajie,et al. Deformation mechanical properties and damage mechanism of sandstone under different confining pressures[J]. Coal Geology & Exploration,2015,43(4):63-68.(in Chinese)) [26] 刘基程,马林建,张宁,等. 岩石变形破坏过程的能量演化研究进展[J]. 地下空间与工程学报,2021,17(3):975-986.(LIU Jicheng,MA Linjian,ZHANG Ning,et al. Progress in the study of the energy evolution of rock deformation and damage processes[J]. Chinese Journal of Underground Space and Engineering,2021,17(3):975-986.(in Chinese)) [27] 苗胜军,段懿轩,尹紫微,等. 不同应力路径下辉绿岩能量演化与破坏机制研究[J]. 振动与冲击,2023,42(14):154-161.(MIAO Shengjun,DUAN Yixuan,YIN Ziwei,et al. Energy evolution and failure mechanism of diabase under different stress paths[J]. Journal of Vibration and Shock,2023,42(14):154-161.(in Chinese)) [28] 张楚旋,戴兵,吴秋红. 不同应力路径下岩石卸荷破坏过程的变形特性与能量耗散分析[J]. 中国安全生产科学技术,2014,10(10):35-40.(ZHANG Chuxuan,DAI Bing,WU Qiuhong,et al. Deformation characteristics and energy dissipation analysis of rock unloading damage process under different stress paths[J]. Journal of Safety Science and Technology,2014,10(10):35-40.(in Chinese)) [29] 许光泉,汪楠,高宇航,等. 淮南中区13-1煤层砂岩水文地球化学特征及成因[J]. 安徽理工大学学报(自然科学版),2020,40(6):27-34.(XU Guangquan,WANG Nan,GAO Yuhang,et al. Hydrogeochemical characteristics and genesis of the 13-1 coal seam sandstone in Huainan Central District[J]. Journal of Anhui University of Science and Technology(Natural Science),2020,40(6):27-34.(in Chinese))
PDF(3041 KB)

Accesses

Citation

Detail

Sections
Recommended

/