Reinforcement learning based vibration control of a piezoelectric cantilever beam with time delay

ZHANG Meng1, WANG Xiaoyu2, WEN Hao1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (16) : 77-83.

PDF(1813 KB)
PDF(1813 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (16) : 77-83.

Reinforcement learning based vibration control of a piezoelectric cantilever beam with time delay

  • ZHANG Meng1,WANG Xiaoyu2,WEN Hao1
Author information +
History +

Abstract

The presence of time delays in various control systems can have a significant impact on the performance of controllers. Ignoring time delays may result in reduced control effectiveness and even instability. This study investigates the effects of time delays on reinforcement learning based vibration controller. Firstly, a dynamic model of a piezoelectric cantilever beam is established using the finite element method, and the parameters of the dynamic model are corrected using experimental identification methods. Subsequently, the impact of different time delay conditions on the Proximal Policy Optimization (PPO)-based reinforcement learning (RL) controller and the PD controller are simulated and analyzed. Then, multiple reinforcement learning time-delay controllers are trained under different time-delay conditions, and the control effect of the time-delay controller is simulated and experimentally verified. Finally, the robustness of the reinforcement learning time-delay controller to time delay deviations is evaluated. The results show that the reinforcement learning time-delay controller not only has good control performance under the corresponding time delay conditions but also has a certain tolerance range for actual time delay deviations, demonstrating good robustness.

Key words

reinforcement learning / PPO / time-delay / vibration control

Cite this article

Download Citations
ZHANG Meng1, WANG Xiaoyu2, WEN Hao1. Reinforcement learning based vibration control of a piezoelectric cantilever beam with time delay[J]. Journal of Vibration and Shock, 2024, 43(16): 77-83

References

[1] 冯焕, 庞爱平, 周鸿博, 等. 大型柔性航天器的高精度结构化综合控制[J]. 科学技术与工程, 2022,22(29):12909-12916. [2] 蔡国平•结构振动主动控制[M]. 北京:科学出版社,2021. [3] 周嘉明, 董龙雷, 孟超, 等. 基于强化学习的随机振动主动控制策略[J]. 振动与冲击, 2021,40(16):281-286. [4] 陈孝聪, 张恩启, 程斌, 等. 基于深度强化学习的拉索智能减振算法[J]. 振动与冲击, 2022,41(23):175-181. [5] Xu R, Li D, Jiang J. An online learning-based fuzzy control method for vibration control of smart solar panel[J]. Journal of Intelligent Material Systems and Structures, 2015,26(18):2547-2555. [6] Qiu Z, Chen G, Zhang X. Reinforcement learning vibration control for a flexible hinged plate[J]. Aerospace Science and Technology, 2021,118:107056. [7] Qiu Z, Du J, Zhang X. Vibration control of three coupled flexible beams using reinforcement learning algorithm based on proximal policy optimization[J]. Journal of Intelligent Material Systems and Structures, 2022,33(20):2578-2603. [8] Tao Z, Yian D, Fan H, et al. Reducing vibration of a rotating machine with deep reinforcement learning: 2020 IEEE International Conference on Mechatronics and Automation (ICMA)[C], 2020. IEEE. [9] Ouyang Y, He W, Li X. Reinforcement learning control of a single‐link flexible robotic manipulator[J]. IET Control Theory & Applications, 2017,11(9):1426-1433. [10] Zhang T, Chu H, Zou Y, et al. A deep reinforcement learning-based optimization method for vibration suppression of articulated robots[J]. Engineering Optimization, 2023,55(7):1189-1206. [11] Landman R, Haffert S Y, Radhakrishnan V M, et al. Self-optimizing adaptive optics control with reinforcement learning for high-contrast imaging[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021,7(3):39002. [12] 罗梦翔, 高明周, 蔡国平. 机翼颤振的时滞反馈控制研究[J]. 振动与冲击, 2016,35(18):58-61. [13] 宋攀, 董兴建, 孟光. 柔性基础主动隔振系统的缩聚建模和时滞问题研究[J]. 振动与冲击, 2012,31(23):57-61. [14] 李美超, 陈龙祥, 蔡国平. 不确定线性时滞系统模型参考自适应控制研究[J]. 应用力学学报, 2018,35(06):1207-1213. [15] 孙洪鑫, 李建强, 王修勇, 等. 基于磁致伸缩作动器的拉索主动控制时滞补偿研究[J]. 振动与冲击, 2017,36(14):208-215. [16] 吴彪, 闫盖, 李佩琳, 等. 考虑时滞的主动悬架系统控制策略对比研究[J]. 力学季刊, 2023,44(01):75-87. [17] 李非凡, 赵艳影. 基于时滞半主动控制的起落架摆振反共振峰优化[J]. 振动与冲击, 2023,42(08):341-350. [18] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv:1707.06347, 2017. [19] 卢志荣, 王晓明, 周文雅. MFC驱动主动反射器形面的有限时间动态变形控制[J]. 振动与冲击, 2023,42(04):325-332. [20] 孙杰, 黄庭轩, 朱东方, 等. 基于压电纤维复合材料的航天器动力学建模与振动抑制[J]. 飞控与探测, 2019,2(03):70-76.
PDF(1813 KB)

Accesses

Citation

Detail

Sections
Recommended

/