Static and dynamic mechanical properties of composite sandwich plate with anti-impact ground pressure

WU Lili, LI Jinpeng, WU Yuqi, ZHENG Hechong

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (17) : 1-11.

PDF(3968 KB)
PDF(3968 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (17) : 1-11.

Static and dynamic mechanical properties of composite sandwich plate with anti-impact ground pressure

  • WU Lili, LI Jinpeng, WU Yuqi, ZHENG Hechong
Author information +
History +

Abstract

This study introduces a novel composite sandwich panel structure, emphasizing energy absorption and impact resistance. This structure integrates a glass fiber reinforced polymer (GFRP) plate with a triangular lattice core, employing LY160 low yield point steel as the core material. Designed for compatibility with metal supports, this system enhances energy absorption and impact resistance. Mechanical properties of GFRP and LY160 mild steel was tested under both quasi-static and dynamic conditions. The parameters of the C-S dynamic constitutive model for LY160 steel were also developed. Quasi-static compression tests on these composite sandwich panels were performed, and a subsequent finite element parameter analysis focused on impact resistance was carried out. The results revealed a prominent positive relationship between the core rod diameter and the energy absorption per unit volume. Specifically, Specifically, the specimen with a 6 mm core rod diameter absorbed six times more energy than that of a 4 mm core rod diameter. Furthermore, there was an increase in the energy absorbed per unit mass. However, the change in energy absorption becomes less significant when the diameter of the core rod exceeds 6 mm. The energy absorption rate and unit mass absorption energy value of the sandwich panel structure are significantly influenced by the diameter of the core rod and the width of the unit cell when the rock burst magnitude is 3. With a core rod diameter of 6 mm, the energy absorption rate can exceed 90%. Additionally, a unit cell width of 140 mm ensures a balance between energy absorption efficiency and cost-effectiveness for the sandwich panel.

Key words

rock burst / composite sandwich structure / flat compression tests / energy absorbing configuration

Cite this article

Download Citations
WU Lili, LI Jinpeng, WU Yuqi, ZHENG Hechong. Static and dynamic mechanical properties of composite sandwich plate with anti-impact ground pressure[J]. Journal of Vibration and Shock, 2024, 43(17): 1-11

References

[1] 齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考 [J]. 煤炭科学技术, 2019, 47(09): 1-40. QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47 (09): 1-40. [2] 齐庆新, 潘一山, 李海涛, 等. 煤矿深部开采煤岩动力灾害防控理论基础与关键技术 [J]. 煤炭学报, 2020, 45(05): 1567-84. QI Qingxin, PAN Yishan, LI Haitao, et al. Theoretical basis and key technology of prevention and control of coal-rock dynamic disasters in deep coal mining[J]. Journal of China Coal Society, 2020, 45 (05): 1567-84. [3] 吕祥锋, 潘一山. 刚-柔-刚支护防治冲击地压理论解析及实验研究 [J]. 岩石力学与工程学报, 2012, 31(01): 52-9. LV Xiangfeng, PAN Yishan. Theoretical analysis and experimental research on rock burst prevention mechanism of rigid-flexible-rigid supporting structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (01): 52-9. [4] 潘一山, 吕祥锋, 李忠华. 吸能耦合支护模型在冲击地压巷道中应用研究[J]. 采矿与安全工程学报, 2011, 28(01): 6-10. PAN Yishan, LV Xiangfeng, LI Zhonghua. The model of energy-absorbing coupling support and lts application in rock burst roadway[J]. Journal of Mining and Safety Engineering, 2011, 28 (01): 6-10 [5] 潘一山, 王凯兴, 肖永惠. 基于摆型波理论的防冲支护设计 [J]. 岩石力学与工程学报, 2013, 32(08): 1537-43. PAN Yishan, WANG Kaixing, XIAO Yonghui. Design of anti-scour support based on theory of pendulum-type wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (08): 1537-43 [6] 潘一山, 肖永惠, 李国臻. 巷道防冲液压支架研究及应用 [J]. 煤炭学报, 2020, 45(01): 90-9. PAN Yishan, XIAO Yonghui, LI Guozhen. Roadway hydraulic support for rockburst prevention in coal mine and its application[J]. Journal of China Coal Society, 2020, 45 (01): 90-9 [7] 潘一山, 齐庆新, 王爱文, 等. 煤矿冲击地压巷道三级支护理论与技术[J]. 煤炭学报,2020,45(05):1585-1594. PAN Yishan, QI Qingxin, WANG Aiwen, et al. Theory and technology of three levels support in bump-prone roadway[J]. Journal of China Coal Society, 2020,45 (05): 1585-1594 [8] 高明仕, 窦林名, 张农, 等. 冲击矿压巷道围岩控制的强弱强力学模型及其应用分析[J]. 岩土力学,2008,(02):359-364. GAO Mingshi, DOU Linming, ZHANG Nong, et al. Strong-soft-strong mechanical model for controlling roadway surrounding rock subjected to rock burst and its application [J]. Rock and Soil Mechanics, 2008, (02): 359-364 [9] 高明仕, 贺永亮, 陆菜平, 等. 巷道内强主动支护与弱结构卸压防冲协调机制[J]. 煤炭学报,2020,45(08):2749-2759. GAO Mingshi, HE Yongliang, LU Caiping, et al. Coordination mechanism of internal strong active support,soft structure pressure relief and anti-punching of roadway[J]. Journal of China Coal Society, 2020,45 (08): 2749-2759 [10] 吴拥政, 付玉凯, 何杰, 等. 深部冲击地压巷道“卸压-支护-防护”协同防控原理与技术[J]. 煤炭学报,2021,46(01):132-144. WU Yongzheng, FU Yukai, HE Jie, et al. Principle and technology of “pressure relief-support-protection” collaborative prevention and control in deep rock burst roadway[J]. Journal of China Coal Society, 2021,46 (01): 132-144 [11] 何满潮, 郭志飚. 恒阻大变形锚杆力学特性及其工程应用 [J]. 岩石力学与工程学报, 2014, 33(07): 1297-308. HE Manchao, GUO Zhibiao. Mechanical property and engineering application of anchor bolt with constant resistance and large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (07): 1297-308 [12] 王爱文, 潘一山, 赵宝友, 等. 防冲吸能锚杆(索)的静动态力学特性与现场试验研究[J]. 岩土工程学报,2017,39(07):1292-1301. WANG Aiwen, PAN Yishan, ZHAO Baoyou, et al. Static and dynamic mechanical properties of energy absorption bolts (cable)and field tests[J]. Chinese Journal of Geotechnical Engineering, 2017,39 (07): 1292-1301 [13] 付玉凯, 鞠文君, 吴拥政,等. 高冲击韧性锚杆吸能减冲原理及应用研究[J]. 煤炭科学技术,2019,47(11):68-75. FU Yukai, JU Wenjun, WU Yongzheng, et al. Study on principle application of energy absorption and bump reduction of high impact toughness rock bolt[J]. Coal Science and Technology, 2019, 47 (11): 68-75 [14] ZHAO Tongbin, XING Minglu, GUO Weiyao, et al. Anchoring effect and energy-absorbing support mechanism of large deformation bolt [J]. Journal of Central South University, 2021, 28(2): 572-81. [15] WANG Qi, WU Wenrui, WANG Yetai, et al. Evolution and control mechanism of rock burst in rock anchored by new energy-absorbing material[J]. Rock Mechanics and Rock Engineering, 2023, 56(6): 4569-82. [16] 唐治, 潘一山, 朱小景, 等. 六边薄壁构件径向压缩下的吸能防冲特性分析 [J]. 煤炭科学技术, 2016, 44(11): 56-61. TANG Zhi, PAN Yishan, ZHU Xiaojing, et al. Analysis on energy absorption and impact prevention features of hexagonal thin-wall component under radial compression [J]. Coal Science and Technology, 2016, 44 (11): 56-61 [17] 唐治, 潘一山, 李祁, 等. 矿用防冲方形折纹薄壁构件吸能特性数值分析[J]. 振动与冲击, 2014, 33(23): 87-91+115. TANG Zhi, PAN Yishan, LI Qi, et al. Numerical analysis of energy-absorption properties of a thin-walled component with square folds for rock burst prevention in mine [J]. Journal of Vibration and Shock, 2014, 33(23): 87-91+115. [18] 马箫, 潘一山, 张建卓, 等. 板块倾角对折棱管防冲支护装置吸能特性的影响[J]. 中国安全科学学报,2017,27(01):122-127. MA Xiao, PAN Yishan, ZHANG Jianzhuo, et al. Influence of plate inclination angle on energy absorption characteristics of pre-folded edge tube anti-scour and supporting device [J]. China Safety Science Journal, 2017,27 (01): 122-127 [19] 马箫, 潘一山, 张建卓, 等 防冲支架的核心吸能构件设计与吸能性能研究[J]. 煤炭学报,2018,43(04):1171-1178. MA Xiao, PAN Yishan, ZHANG Jianzhuo, et al. Design and performance research on core energy absorption component of anti-impact support [J]. Journal of China Coal Society, 2018,43 (04): 1171-1178 [20] 安栋, 陈征, 宋义敏, 等. 冲击地压矿井巷道吸能防冲液压支架防冲效果研究[J]. 煤炭科学技术,2022,50(11):12-19. AN Dong, CHEN Zheng, SONG Yimin, et al. Research on energy absorption characteristics and anti-bump effect of anti-bump hydraulic support in rock burst mine roadway [J]. Coal Science and Technology, 2022,50 (11): 12-19 [21] 王春华, 安达, 韩冲, 等. 冲击地压新型加肋板圆管式吸能防冲构件的仿真与试验[J]. 振动与冲击,2019,38(11):203-210+241. WANG Chunhua, AN Da, HAN Chong, et al. Simulation and tests for new tubular type energy-absorbing and anti-impact members with stiffened plate under rock burst [J]. Journal of Vibration and Shock, 2019, 38 (11): 203-210+241 [22] 徐连满, 马柳, 姜笑楠, 等. 冲击地压载荷下O型棚支架动力响应规律研究 [J]. 煤炭科学技术, 2022, 50(04): 49-57. XU Lianman, MA Liu, JIANG Xiaonan, et al. Study on dynamic response law of O-shaped support under rock burst loading[J]. Coal Science and Technology, 2022, 50 (04): 49-5 [23] 徐连满, 潘威翰, 潘一山, 等. O型棚支护抵抗冲击地压等级计算方法 [J]. 煤炭学报, 2020, 45(10): 3408-3417. XU Lianman, Pan Weihan, PAN Yishan, et al. Calculation method of rock burst resistance grade of O-shaped shed support[J]. Journal of China Coal Society, 2020, 45 (10): 3408-3417 [24] KUANG Liang, WANG Gang, QIU Wenge, et al. Study on combined energy absorption support for rockburst disaster control in tunnelling [J]. Shock and Vibration, 2021, 2021. [25] 张永祥, 王睿智, 刘浩, 等. 不同单胞形貌和承载方向下蜂窝结构吸能特性及防冲能力评估[J]. 重庆大学学报,2022,45(12):1-13. ZHANG Yongxiang, WANG Ruizhi, LIU Hao, et al. Energy absorption characteristics and impact resistance evaluation of honeycomb structures under different unit cell morphologies and bearing directions[J]. Journal of Chongqing University, 2022,45 (12): 1-13 [26] GUO Chenghu, MAO Jun, XIE Miao. Analysis of energy absorption characteristics of corrugated top beams of anti-impact hydraulic supports[J]. Alexandria Engineering Journal, 2022, 61(5): 3757-72. [27] 许海亮, 高晗钧, 郭旭, 等. 巷道多向吸能防冲支护结构性能研究[J]. 煤矿安全,2023,54(05):224-231. XU Hailiang, GAO Hanjun, GUO Xu, et al. Study on anti-impact support structure performance of multi-direction energy absorption for roadway[J]. Safety in Coal Mines, 2023,54 (05): 224-231 [28] 许海亮, 高晗钧, 宋义敏, 等. 巷道防冲吸能钢管混凝土拱架支护性能数值模拟研究[J]. 煤炭科学技术. 网络首发. XU Hailiang, GAO Hanjun, SONG Yimin, et al. Numerical simulation study on the support performance of anti-impacting and energy-absorbing concrete-filed steel tube arches in roadways [J]. Coal Science and Technology, Network launch. [29] WU Lili, AN LP, BAI Y. In-plane stability of steel circular closed supports with I-section of sinusoidal corrugated webs: Experimental and numerical study [J]. Tunnelling and Underground Space Technology, 2020, 106: 103566. [30] WU Lili, WANG Hui, XIE Yazhou. In-plane stability of an underground support system with steel corrugated webs: Experimental study, finite element analysis, and design formula [J]. Journal of Constructional Steel Research, 2021, 185: 106872. [31] 潘一山. 冲击地压工程学 [M]. 北京: 高等教育出版社, 2022. PAN Yishan. Rock burst engineering [M]. Beijing: Higher Education Press, 2022 [32] Mcgarr A., Green R. W. E., Spottiswoode S. M.. Strong ground motion of mine tremors: some implications for near-source ground motion parameters [J]. Bulletin of the Seismological Society of America, 1981, 71(1): 295-319. [33] 高明仕, 张农, 窦林名, 等. 基于能量平衡理论的冲击矿压巷道支护参数研究 [J]. 中国矿业大学学报, 2007, (04): 426-30. GAO Mingshi, ZHANG Nong, DOU Linming, et al. Study of Roadway Support Parameters Subjected to Rock Burst Based on Energy Balance Theory[J]. Journal of China University of Mining & Technology, 2007, (04): 426-30 [34] 郭然, 于润沧. 新建有岩爆倾向硬岩矿床采矿技术研究工作程序 [J]. 中国工程科学, 2002, (07): 51-5. GUO Ran, YU Runcang. Working procedure of developing a new deep hard-rock burst-prone deposit[J]. Strategic Study of CAE, 2002, (07): 51-55 [35] 刘军, 杜青炎, 韩荣军. 深部开采冲击矿压矿井大断面巷道支护的探索 [J]. 煤矿开采, 2010, 15(01): 65-67 LIU Jun, DU Qingyan, HAN Rongjun. Research on supporting roadway with large section in mining deep coal seam with bursting liability[J]. Journal of Mining And Strata Control Engineering, 2010, 15 (01): 65-7
PDF(3968 KB)

Accesses

Citation

Detail

Sections
Recommended

/