Pounding tuned mass damper-inerter for vortex-induced vibration control of cable stays

LI Shujin1, ZENG Wenlong1, ZHANG Yuanjin2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (17) : 214-223.

PDF(2112 KB)
PDF(2112 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (17) : 214-223.

Pounding tuned mass damper-inerter for vortex-induced vibration control of cable stays

  • LI Shujin1, ZENG Wenlong1, ZHANG Yuanjin2
Author information +
History +

Abstract

On the basis of previous research on the tuned mass damper-inerter(TMDI), by introducing the nonlinear collision mechanism, a novel inertial tuned mass damper with pounding(PTMDI) is proposed to control the vortex induced vibration of the stay cables. This damper not only reduces the size of the device, but also utilizes the sudden acceleration change generated by the oscillator during collision to improve the mass amplification effect of the inertial mass damper. To some extent, it solves the installation method of traditional inertial mass dampers that require consolidation at one end, and the arrangement is more flexible. The control equation for vortex induced vibration reduction of stay cable equipped with this device has been established, and the characteristics of vortex induced vibration of the cable have been analyzed, and their vibration reduction performance has been studied. On this basis, the influence and optimization of the inertia damper and pounding parameters were discussed, and the method for selecting the optimal parameters was provided. The numerical example shows that the proposed PTMDI can significantly reduce the vortex induced vibration response of stay cable, and has superior control ability under the optimal parameters obtained by the proposed optimization method. The control of multimodal vortex-induced vibration in cables that often encounter wind indicates that the pounding improves the robustness of PTMDI and has a considerable degree of control effect on the multimodal vortex-induced vibration.

Key words

stay cables / vortex-induced vibration / vibration control / inerter mass damper / impact damping

Cite this article

Download Citations
LI Shujin1, ZENG Wenlong1, ZHANG Yuanjin2. Pounding tuned mass damper-inerter for vortex-induced vibration control of cable stays[J]. Journal of Vibration and Shock, 2024, 43(17): 214-223

References

[1] 陈政清, 李寿英, 邓羊晨, 等. 桥梁长索结构风致振动研究新进展[J]. 湖南大学学报(自然科学版), 2022, 49(5): 1-8.
   CHEN Zhengqing, LI Shouying, DENG Yangchen, et al. Recent challenges and advances on study of wind-induced vibrations of bridge cables[J]. Journal of Hunan University(Natural Sciences), 2022, 49(5): 1-8.
[2] 王志搴. 多索-单梁耦合结构的动力学建模及非线性特性研究[J]. 动力学与控制学报, 2023, 21(4): 41-47.
   WANG Zhiqian. Study on dynamic characteristics and nonlinear characteristics of multi-cable single beam coupled structures[J]. Journal of Dynamics and Control, 2023, 21(4): 41-47.
[3] 夏超, 回忆, 李珂. 单侧主缆刚度损伤悬索桥的模态分析及1∶1内共振[J]. 动力学与控制学报, 2023, 21(2): 66-74.
   XIA Chao, HUI Yi, LI Ke. Study on modal analysis and 1:1 internal resonance of suspension bridge with unilateral main cable stiffness damage[J]. Journal of Dynamics and Control, 2023, 21(2): 66-74.
[4] GE C, CHEN A. Vibration characteristics identification of ultra-long cables of a cable-stayed bridge in normal operation based on half-year monitoring data[J]. Structure and Infrastructure Engineering, 2019, 15(12): 1567-1582.
[5] 刘志文, 沈静思, 陈政清, 等. 斜拉索涡激振动气动控制措施试验研究[J]. 振动工程学报, 2021, 34(3): 441-451.
   LIU Zhiwen, SHEN Jingsi, CHEN Zhengqing, et al. Experimental study on aerodynamic control measures for vortex-induced vibration of stay-cable[J]. Journal of Vibration Engineering, 2021, 34(3): 441-451.
[6] 郑万山, 唐光武, 郑罡, 等. 苏通大桥斜拉索拉弯疲劳试验研究[J]. 公路交通技术, 2010, (4): 73-76.
   ZHENG Wanshan, TANG Guangwu, ZHENG Gang, et al. Stretch bending fatigue test study on stayed cables in Sutong Bridge[J]. Technology of Highway and Transport, 2010, (4): 73-76.
[7] 刘庆宽, 郑云飞, 白雨润, 等. 斜拉索风雨振气动抑振措施的参数优化[J]. 振动与冲击, 2015, 34(8): 31-35.
   LIU Qingkuan, ZHENG Yunfei, BAI Yurun, et al. Parametric optimization of aerodynamic anti-vibration measure for rain-wind induced vibration of cables[J]. Journal of Vibration and Shock, 2015, 34(8): 31-35.
[8] 孙一飞, 刘庆宽, 王仰雪, 等. O型套环对斜拉索涡激振动影响的试验研究[J]. 工程力学, 2023, 40(7): 239-248.
   SUN Yifei, LIU Qingkuan, WANG Yangxue, et al. Experimental study on effect of O-rings on vortex induced vibration of stay cables[J]. Engineering Mechanics, 2023, 40(7): 239-248.
[9] KRENK S. Vibrations of a taut cable with an external damper[J]. Journal of Applied Mechanics, 2000, 67(4): 772-776.
[10] PACHECO B M, FUJINO Y, SULEKH A. Estimation curve for modal damping in stay cables with viscous damper[J]. Journal of Structural Engineering, 1993, 119(6): 1961-1979.
[11] 陈志, 彭文林, 禹见达, 等. 拉索-阻尼器系统的改进实模态分析方法[J]. 动力学与控制学报, 2023, 21(4): 7-17.
   CHEN Zhi, PENG Wenlin, YU Jianda, et al. An improved method to real modal analysis of cable-damper systems[J]. Journal of Dynamics and Control, 2023, 21(4): 7-17.
[12] CAI C S, WU W J, SHI X M. Cable vibration reduction with a hung-on TMD system. Part I: theoretical study[J]. Journal of Vibration and Control, 2006, 12(7): 801-814.
[13] WU W J, CAI C S. Cable vibration reduction with a hung-on TMD System, Part II: parametric study[J]. Journal of Vibration and Control, 2006, 12(8): 881-899.
[14] LI Y, SHEN W, ZHU H. Vibration mitigation of stay cables using electromagnetic inertial mass dampers: full-scale  experiment and analysis[J]. Engineering Structures, 2019, 200: 109693.
[15] 刘欣鹏, 杨映雯, 孙毅, 等. 基于惯容系统位置的调谐质量阻尼器的振动控制研究[J]. 振动与冲击, 2023, 42(1): 215-223.
   LIU Xinpeng, YANG Yingwen, SUN Yi, et al. Vibration control of TMD based on position of inertial system[J]. Journal of Vibration and Shock, 2023, 42(1): 215-223.
[16] 汪志昊, 程志鹏, 王浩, 等. 电涡流惯质阻尼器对斜拉索振动控制研究[J]. 土木工程学报, 2021, 54(12): 53-63.
   WANG Zhihao, CHENG Zhipeng, WANG Hao, et al. Eddy-current inertial mass damper for cable vibration control[J]. China Civil Engineering Journal, 2021, 54(12): 53-63.
[17] XU K, SONG J, BI K. Vortex-induced vibration control of long stay cables by using inerter-based dampers[J]. International Journal of Structural Stability and Dynamics, 2022, 22(12): 2250135.
[18] SONG G B, ZHANG P, LIN Y X, et al. Seismic control of power transmission tower using pounding TMD[J]. Journal of Engineering Mechanics, 2013, 139(10): 1395-1406.
[19] 王修勇, 胡仁康, 邬晨枫, 等. 单面碰撞TMD及其桥梁涡激振动控制研究[J]. 振动与冲击, 2020, 39(1): 169-174.
   WANG Xiuyong, HU Renkang, WU Chenfeng, et al. Single-side pounding TMD and its application in bridge’s VIV control[J]. Journal of Vibration and Shock, 2020, 39(1): 169-174.
[20] 李书进, 杨微婷, 杜政康, 等. 滚动碰撞式调制质量阻尼器及其减振性能研究[J]. 振动工程学报, 2018, 31(5): 845-853.
   LI Shujin, YANG Weriting, DU Zhengkang, et al. Study on a pounding tuned rotary mass damper and its vibration reduction performance[J]. Journal of Vibration Engineering, 2018, 31(5): 845-853.
[21] MARIAN L, GIARALIS A. Optimal design of a novel tuned mass-damper–inerter(TMDI) passive vibration control configuration for stochastically support-excited structural systems[J]. Probabilistic Engineering Mechanics, 2014, 38: 156-164.
[22] MEHRABI A B, TABATABAI H. Unified finite difference formulation for free vibration of cables[J]. Journal of Structural Engineering, 1998, 124(11): 1313-1322.
[23] XU K, GE Y, ZHANG D. Wake oscillator model for assessment of vortex-induced vibration of flexible structures under wind action[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 192-200.
[24] FARSHIDIANFAR A, ZANGANEH H. A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio[J]. Journal of Fluids and Structures, 2010, 26(3): 430-441.
[25] XUE Q, ZHANG J, HE J, et al. Control performance and robustness of pounding tuned mass damper for vibration reduction in SDOF structure[J]. Shock and Vibration, 2016, 2016: 8021690.
[26] 周旭辉, 韩艳, 王磊, 等. 基于改进尾流振子模型的超长拉索涡激振动特性数值研究[J]. 中国公路学报, 2019, 32(10): 257-265.
   ZHOU Xuhui, HAN Yan, WANG Lei, et al. Numerical study of vortex-induced vibration characteristics of ultra-long cables based on a modified wake oscillator model[J]. China Journal of Highway and Transport, 2019, 32(10): 257-265.
PDF(2112 KB)

Accesses

Citation

Detail

Sections
Recommended

/