To investigate the impact load of the backup safety clamp and the mechanical response of the key position of the line when the strain clamp broke, a finite element model of the coupling of the strain clamp-backup safety clamp-conductor was established. Taking the JL / G1A-630 / 45-45 / 7 conductor as the object, the process of the backup safety clamp bearing the impact load alone after the strain clamp disconnected was simulated and the changes in tension at key positions of the backup safety clamp, following the disconnection of the strain clamp under various spans and height differences, were analyzed. To validate the model, several sets of safety standby clamps underwent impact tests involving strain clamps. It was found that an increased span and height difference resulted in heightened extreme values of node tension and prolonged vibration periods of the conductor near the backup safety clamp. At a 500 m span, the tension's extreme value and vibration period increased by 32.08% and 140.23%, respectively, compared to a 150 m span. The occurrence of ice-shedding jump will reduce the extreme value of node tension and the vibration period of conductor near the backup safety clamp. The established finite element model was utilized for numerical simulations of the strain clamp’s breaking impact. To prevent conductor damage caused by the strain clamp’s breaking impact, it is recommended to limit the span to less than 500 m and to lower the height of the suspension points.
Key words
Strain clamp /
Backup safety clamp /
Finite element analysis /
Disconnected impacts
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 毛艳,邓桃,魏杰,等.±1100 kV线路金具电场仿真与电晕特性[J].高电压技术,2019,45(04) : 1137-1145.
MAO Yan,DENG Tao,WEI Jie,et al.Electric Field Characteristic and Corona Performance of ±1 100 kV Power Fittings for Transmission Lines[J].High Voltage Engineering,2019,45(04):1137-1145.
[2] 吴国洪,袁志平.大截面导线耐张线夹压接工艺[J].电力建设,2010,31(5):126-129.
Wu Guohong,Yuan Zhiping.Pressure contact technique for strain clamps used for conductors with large-cross section[J].Electric Power Construction,2010,31(5): 126-129.
[3] 牛海军,司佳钧,刘胜春,等.铝合金芯铝绞线耐张线夹研制与压接性能分析[J].中国电机工程学报,2015, 35(S1):249-254.
Niu Haijun,Si Jiajun,Liu Shengchun,et al.Research of strain clamp of aluminum twisted line of aluminum alloy core and compression joint performance[J].Proceedings of the CSEE,2015,35(S1):249-254.
[4] 胡加瑞,刘纯,欧阳克俭,等.500kV直流输电线路耐张线夹断裂的原因分析[J].电力建设,2012,33(7): 82-85.
Hu Jiarui,Liu Chun,Ouyang Kejian,et al.Analysis on cracking failure of strain clamp on 500 kV DC transmission line[J].Electric Power Construction,2012, 33(7):82-85.
[5] 周立宪,孙涛,顾建.大截面导线用耐张线夹压接性能评价[J].中国电机工程学报,2020,40(S1) :149-154.
ZHOU Lixian,SUN Tao,GU Jian.Evaluation of strain clamp crimping property for large cross-section conductor[J].Proceed-ings of the CSEE,2020,40(S1) :149-154.
[6] 万建成.金具对大截面导线握力的影响因素[J].电力建设, 2012,12(6):84-86.
Wan Jiancheng,Influence Factors of Fitting on Grip Strength ofLarge Cross-section Conductor [J].Electric Power Construction,2012,12(6): 84-86.
[7] 李阳林,邓静伟,饶斌斌,等. 一起覆冰引起的输电线路耐张线夹断裂原因分析与防范[J]. 江西电力,2017,41 ( 6 ):27-30.
Li Ynaglin,Deng Jingwei,Rao Binbin,et al.Cause analysis and prevention of a breakage of transmission line tension clamp caused by icing[J].Jiangxi Electric Power,2017,41(6):27-30.
[8] 颜涛,李学,王云辉,等.架空线路耐张线夹典型故障分析[J].电工技术,2021,(01): 32-35.
YAN Tao,LI Xue,WANG Yunhui,et al.Analysis of typical failures of strain clamps for overhead lines [J].Electric Engineering,2021(1):32-35.
[9] 黄金领,林均发,韦佩才.大线径导线耐张线夹锈蚀断裂防范措施探讨[J].广西电力,2019,42(02):66-70.
HUANG Jinling,LIN Junfa,WEI Peicai.Discussion on prevention measures for the corrosion fracture of the tension clamp in the large diameter conductor[J].Guangxi Electric Power,2019,42(2):66-70.
[10] 韩国栋,吴章勤,万书亭,等.基于X射线数字成像技术的高压输电导线内部缺陷检测试验研究[J]. 科学技术与工程,2015,15(03): 227-230.
HAN Guodong,WU Zhangqin,WAN Shuting.The detection research of high voltage transmission line internal defects based on X⁃ray digital radiography[J].Science Technology and Engineering,2015,15(3):227⁃230.
[11] 王炜,袁奇,顾俊杰,等.X射线无损探伤技术在检测输电线路压接金具中的应用[J].上海交通大学学报,2018,52(10): 1189-1194.
WANG Wei,YUAN Qi,GU Junjie,et al.Application of X-ray nondestructive flaw detection technology in transmission line's press fittings[J].Journal of Shanghai Jiaotong University,2018,52(10):1189-1194.
[12] 唐盼,肖宾,邓益民,等.带电作业用绝缘工具超声检测方法[J].高电压技术,2019,45(05): 1584-1590.
TAN Pan,XIAO Bing,DENG Yimin,et al.Ultrasonic Testing Method of Insulation Tool for Live Working[J].High Voltage Engineering,2019,45(05):1584-1590 .
[13] 赵银珊. 基于无人机的220 kV输电线路缺陷自动检测方法[J].自动化应用,2022,(10): 95-97.
ZHAO Yinshan.Automatic defect detection method of 220 kV transmission line based on UAV [J].Automation Application,2022,(10): 95-97 .
[14] 邵明星,武臻,杨东旭.220kV线路耐张线夹断裂原因分析[J].山东电力技术,2017,44(06):77-80.
SHAO Mingxing,WU Zhen,YANG Dongxu.Fracture Analysis of Strain Clamp on 220 kV Transmission Line[J].Shandong Electric Power,2017,44(06): 77-80 .
[15] 叶建锋,王加强. 导线断裂分析及耐张线夹压接位置检测[J]. 湖北电力,2014,38(12): 37-38.
YE Jianfeng,WANG Jiaqiang. Failure analysis of wire and pressure location test of strain clamp[J].Hubei Electric Power,2014,38(12):37-38.
[16] 刘兴亚,郭世广. 输电线路跳线工艺过长的风险与措施分析[J].集成电路应用,2022,39(1):148-149.
LIU Yaxing,GUO Shiguang.Analysis on Risk and Measures of Long Jumper Technology of Transmission Line[J].Application of IC,2022,39(1):148-149.
[17] 程应镗.送电线路金具的设计安装试验和应用[M].北 京:水利电力出版社,1989:5-12.
[18] 王逸琦.高压架空线耐张线夹压接质量的状态评估[J]. 电工技术,2020,(20):95-97.
WANG Yiqi.State Assessment of Crimp Quality of Tension Clamp for High Voltage Overhead Line[J].Electric Engineering,2020,(20):95-97.
[19] DL/T 757—2009 耐张线夹[S].北京:中国电力出版社,2009.
[20] 张静华,王银春,沈啸峰等. 一种导线耐张预绞式安全备用线夹[P].CN216436754U.2022-05-03.
[21] 孙杰,张伟,孙义忠. 碳纤维导线耐张安全备份线夹[P].CN210838873U.2020-06-23.
[22] 李黎,夏正春,江宜城等. 输电线断线振荡研究[J]. 工程力学,2008,(06): 165-169.
LI Li,XIA Zhengchun,JIANG Yicheng,et al. Study on wire breaking-induced vibrations of electric transmission line[J].Engineering Mechanics,2008,25(6): 165 -169.
[23] 张宇卓,江岳,李小亭等.架空输电导线不均匀脱冰跳跃高度计算[J].振动与冲击,2023,42(11):75-86.
ZHANG Yuzhu , JIANG Yue, LI Xiaoting et al.Calculation of jump height for uneven ice-shedding of overhead transmission lines[J].Journal of Vibration and Shock,2023,42(11):75-86.
[23] 张健琦,张德凯,邓洪洲.大跨越输电塔线体系断线响应分析[J].山东电力技术,2021,48(06):
ZHANG Jianqi,ZHANG Dekai,DENG Hongzhou.Analysis of Transmission Line Rupture Response for Long⁃span Transmission Tower⁃line System[J].Shandong Electric Power,2021,48(06)
[24] 刘锐鹏;颜天佑;张耿斌;许志华;徐辉.超高压输电塔在覆冰断线作用下的动力响应[J].云南电力技术,2014,42(01):59-62.
LIU Ruipeng,YAN Tianyou ,ZHANG Gengbin et al.Research on the Dynamic Response of EHV Transmission Tower under Ruptured Icing Conduction[J]. Yunnan Electric Power,2014,42(01):59-62.
[25] GHYSLAINE Mcclure, JI Kunpeng, RUI Xiaoming. An Integrated Ice-Shedding Model of Electric Transmission Lines with Consideration of Ice Adhesive/Cohesive Failure [C]. Proceedings of the Eurodyn 2014:the 9th International Conference on Structural Dynamics,JUNE 30-JULY 02,2014.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}