Dynamic response of small rockets airborne horizontal backward ejection simultaneously off orbit

YANG Baosheng, YANG Li’na, WANG Deng, CAI Yunlong, REN Ruoyu, JIANG Yi

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (17) : 237-245.

PDF(3455 KB)
PDF(3455 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (17) : 237-245.

Dynamic response of small rockets airborne horizontal backward ejection simultaneously off orbit

  • YANG Baosheng, YANG Li’na, WANG Deng, CAI Yunlong, REN Ruoyu, JIANG Yi
Author information +
History +

Abstract

In order to solve the shortcomings of large fuel consumption and weak carrying capacity of small rocket self-propelled launch, and further improve the carrying capacity of small rocket, this study proposes an airborne horizontal backward ejection method based on the existing cold ejection technology to realize the cold ejection of small rocket airborne platform. Based on the theory of launch dynamics, a rocket airborne horizontal backward ejection platform is constructed, and the finite element numerical simulation of airborne horizontal backward ejection under multiple working conditions is realized. The ejection mechanism and law of airborne platform backward ejection are studied. The results show that the modal shapes of the finite element model based on beam element and shell element are consistent, the characteristic frequencies are similar, and the frequency difference of each order is within 10 %. Further research shows that the angle of attack has little effect on the ejection velocity and acceleration, but has a great influence on the angular displacement and angular velocity, and the flight angle of attack will not affect the safety of the rocket separation process. The vibration of the carrier has little effect on the dynamic response of the ejection, and will not affect the safety of the separation process.

Key words

Backward ejection / Modal analysis / Plane vibration / Angle of attack / Simultaneous deorbit

Cite this article

Download Citations
YANG Baosheng, YANG Li’na, WANG Deng, CAI Yunlong, REN Ruoyu, JIANG Yi. Dynamic response of small rockets airborne horizontal backward ejection simultaneously off orbit[J]. Journal of Vibration and Shock, 2024, 43(17): 237-245

References

[1] 高贤志,刘超,苗佩云.自力发射时的发射箱燃气排导方案分析[J].战术导弹技术,2020,No.203(05):33-36.
Gao Zhixian, Liu Chao, Miao Peiyun. Research on Jet Exhausting of a Launching Box with Self-launching[J]. Tactical Missile Technology, 2020,No.203(05):33-36.
[2] 刘浩,周军,张士卫.空空导弹发射技术发展现状及趋势研究[J].航空工程进展,2018,9(02):147-158.
Liu H , Zhou J , Zhang S , et al. Current Situation and Trend of Air-to-air Missile Launch Technology[J]. Advances in Aeronautical Science and Engineering, 2018,9(02):147-158.
[3] 王乐,刘志洋.机载武器悬挂投射装置[J].机械管理开发,2009,24(02):40-42.
Wang L, Liu Z.X. Suspension Releasing and Launching Systems of Airborne Weapon[J]. Mechanical Management & Development, 2009,24(02):40-42.
[4] 陈全龙,韩景龙,员海玮.机载导弹导轨式发射过程安全性分析[J].振动与冲击,2013,32(20):41-47.
Quan-Long, Chen, H. Jing-Long, and Y. Hai-Wei. Security analysis of missile rail-launching from an aircraft[J]. Journal of Vibration and Shock, 2013,32(20):41-47.
[5] 刘刚,肖中云,王建涛,刘钒.考虑约束的机载导弹导轨发射数值模拟[J].空气动力学学报,2015,33(02):192-197.
Gang L.G, Xiao Z.Y, Wang J.T, et al. Numerical simulation of missile air-launching process under rail slideway constraints[J]. Acta Aero dynamical Sinica, 2015, 33(2):192-197.
[6] Murman S M, Aftosmis M J, Berger M J, Simulations of store separation from an F/A-18 with a cartesian method[J]. Journal of Aircraft, 2012,41(4):870-878.
[7] 王许可.机载武器发射系统刚柔耦合动力学仿真[J].四川兵工学报,2014,35(07):9-12+20.
Wang X K. Dynamical Simulation of Airborne Eject Launcher Relating to the Coupling of Rigidity and Flexibility[J]. Journal of Sichuan Ordnance, 2014, 35(07):9-12+20.
[8] 刘浩,周军,张士卫.载机大机动条件下空空导弹弹射发射动力学研究[J].振动与冲击,2018,37(02):24-29.
Liu Hao, Zhou Jun, Zhang Shiwei, Launch dynamic characteristics of air-to-air missiles embedded ejection under condition of carriers’ large[J]. Journal of Vibration and Shock,2018,37(02):24-29.
[9] Pan X, Jiang Y, Hu D, et al. Influence of External Factors on Airborne Missile's Horizontal Backward Launching[J]. International Journal of Aerospace Engineering, 2021, 1081252. DOI: 10.1155/2021/1081252
[10] Zhao L, Jiang Y, Wei X, et al. Horizontal Backward Launch Dynamics Modeling and Analysis[J]. International Journal of Aerospace Engineering, 2019, 2019(5):1-9.
[11] 魏昕林. 机载导弹水平向后发射动力学研究[D].北京理工大学,2018.
Wei X.L. Research on the Horizontal Backward Launch Dynamics of Airborne Missiles [D]. Beijing institute of Technology, 2018
[12] 王小飞,袁涛,徐风磊等.某型飞机飞参振动数据分析[J].计测技术,2019,39(03):73-77.
Wang Xiaofei, Yuan Tao, Xu Fenglei, et al. Analysis of Flight Vibration Data for an Airplane [J]. Metrology and Measurement Technology, 2019,39(03):73-77.
[13] 张玉杰,黄超广,杨卫平.涡桨飞机整机振动响应预计与乘员舒适性评估[J].应用力学学报:1-7[2022-08-23].
Zhang Y.J, Huang C.G and Yang W.P. The whole vibration response prediction and body comfort evaluation of turboprop aircraft [J]. Journal of Applied Mechanics, 1-7[2022-08-23].
[14] 王光芦,徐明,李大鹏.飞机飞行振动预计技术[J].航空工程进展,2010,1(03):251-255.
Wang G.W, Xu M, Li D.P. Aircraft Flight Vibration Prediction Methodology[J]. Advances in Aeronautical Science and Engineering, 2010,1(03):251-255.
[15] 廖莎莎,吴成,段继.导轨式机载导弹发射动力学模型及影响因素分析研究[J].弹箭与制导学报,2013,33(03):153-156+162.
Liao S.S, Wu Cheng, Duan J. Launch Dynamics Modeling and Analysis on Influencing Factors for Airborne Missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013,33(03):153-156+162
[16] 王亮,蔡毅鹏,周剑波,王毅,王丽华.导弹外部挂飞振动环境影响因素分析研究[J].强度与环境,2020,47(02):32-35.
Wang L, Cai Y.P, Zhou J.B, et al. The Influence Factors of the Aerial Embarkation Flight Vibration Environment of the Missile[J]. Structure & Environment Engineering, 2020,47(02):32-35.

PDF(3455 KB)

94

Accesses

0

Citation

Detail

Sections
Recommended

/