Reliability comprehensive evaluation of water turbine generator unit under non-stationary water flow excitation

LIU Fuxiu1, LI Zhaojun1, 2, YANG Tongyu2, LI Feibiao2, DING Jiang2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (17) : 79-90.

PDF(1626 KB)
PDF(1626 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (17) : 79-90.

Reliability comprehensive evaluation of water turbine generator unit under non-stationary water flow excitation

  • LIU Fuxiu1, LI Zhaojun1,2, YANG Tongyu2, LI Feibiao2, DING Jiang2
Author information +
History +

Abstract

The occurrence of vibration failure and fatigue failure of a hydro-turbine generator unit can happen simultaneously under the non-stationarity hydraulic excitation. To address these issues, a comprehensive reliability assessment method for a unit under the non-stationarity hydraulic excitation is proposed in this paper. Firstly, the Bayesian network model of the units is established by analyzing its vibration failure and vibration fatigue failure under the non-stationarity hydraulic excitation. Secondly, based on the analysis of the dynamic characteristics of the units, the vibration reliability and the fatigue reliability of the units are analyzed based on the transfer learning and the Kriging model, respectively. Finally, a common failure factor is introduced to propose a comprehensive reliability assessment method for the units. The effectiveness of the proposed method is verified by examples. The example analysis shows that the reliability error of considering common cause failure and not considering common cause failure at 240 MW is 0.0513. The greater the non-stationary hydraulic excitation is, the greater the influence of common cause failure on the reliability of the unit is.

Key words

hydro-turbine generator unit / non-stationarity / reliability comprehensive evaluation / Bayesian network / Kriging model

Cite this article

Download Citations
LIU Fuxiu1, LI Zhaojun1, 2, YANG Tongyu2, LI Feibiao2, DING Jiang2. Reliability comprehensive evaluation of water turbine generator unit under non-stationary water flow excitation[J]. Journal of Vibration and Shock, 2024, 43(17): 79-90

References

[1] 邹佳杰, 周大庆, 郭俊勋, 等. 不同负荷工况水轮发电机组轴系振动特性研究[J]. 水电能源科学, 2023, 41(3): 176-180. ZOU Jia-jie, ZHOU Da-qing, GUO Jun-xun. Research on the vibration characteristics of shafting system of hydroelectric generating set under different load conditions[J]. Water Resources and Power, 2023, 41(3): 176-180. [2] GEORGIEVSKAIA E. Analytical system for predicting cracks in hydraulic turbines[J]. Engineering Failure Analysis, 2021, 127: 105489. [3] LI Z J, LIU Y, LONG H, et al. Reliability analysis of turbine generator units spindle system with vibration fault tree[C]. Advanced Materials Research, 2012, 594-597: 2797-2801. [4] 蔡敢为, 杨旭娟, 李兆军. 混流式水轮发电机组主轴系统组合共振分析[J]. 2008, 27(11): 87-90, 90. CAI Xian-wei, YANG Xu-juan, LI Zhao-jun. Combined resonance analysis of a Francis turbine-generator unit [J]. 2008, 27(11): 87-90, 90. [5] MAURO S, LANZAFAME R, BRUSCA S. Unsteady computational fluid dynamics analysis of the hydrodynamic instabilities in a reversible Francis turbine used in a storage plant[J]. Heliyon, 2019, 5(9): 02441. [6] ZHOU X, WU H G, SHI C Z. Numerical and experimental investigation of the effect of baffles on flow instabilities in a Francis turbine draft tube under partial load conditions[J]. Advances in Mechanical Engineering, 2019, 11(1): 1-15. [7] 李兆军, 刘洋, 龙慧, 等. 多失效模式水轮发电机组非线性振动可靠性模型[J]. 机械工程学报, 2013, 49(16): 170-176. LI Zhao-jun, LIU Yang, LONG Hui, et al. Nonlinear vibration reliability of hydraulic turbine-generator units with multiple failure modes[J]. Journal of Mechanical Engineering, 2013, 49(16): 170-176. [8] 李兆军, 刘福秀, 邱旻, 等. 混流式水轮发电机组非概率可靠性模型[J]. 广西大学学报(自然科学版), 2014, 39(2): 258-264. LI Zhao-jun, LIU Fu-xiu, QIU Min, et al. Non-probabilistic reliability model of Francis hydraulic turbine-generator unit[J]. Journal of Guangxi University: Natural Science Edition, 2014, 39(2): 258-264. [9] LI Z J, LIU Y, LIU F X, et al. Hybrid reliability model of hydraulic turbine-generator unit based on nonlinear vibration[J]. Engineering Science Engineers, Part C: Journal of Mechanical Proceedings of the Institution of Mechanical, 2013, 228(11): 1880-1887. [10] LI Z J, MAO X J, LIU F X, et al. A comprehensive reliability evaluation model of turbine runner blades under complex conditions[J]. Journal of Failure Analysis and Prevention, 2020, 20: 2097-2105. [11] PANG Y, ZHANG X, HUANG H Z, et al. Non-probabilistic reliability research on multi-variable hydraulic turbine blade model[J]. Journal of Shanghai Jiaotong University (Science), 2016, 21: 584-587. [12] 谭俊哲, 于鹏鹏, 袁鹏, 等. 基于逆高斯退化模型的潮流能水平轴水轮机叶片疲劳可靠性研究[J]. 海洋湖沼通报, 2021, 43(3): 1-7. TAN Jun-zhe, YU Peng-peng, YUAN Peng, et al. Research on fatigue reliability of horizontal axis tidal turbine blades based on inverse Gaussian degeneration model[J]. Transactions of Oceanology and Limnology, 2021, 43(3): 1-7. [13] GAGNON M, THIBAULT D. Response spectra and expected fatigue reliability: a look at hydroelectric turbines behavior[J]. Procedia Engineering, 2015, 133: 613-621. [14] LIU F X, LI Z J, LIANG M L, et al. Prediction method of non-stationary random vibration fatigue reliability of turbine runner blade based on transfer learning[J]. Reliability Engineering & System Safety, 2023, 235: 109215. [15] 陈志强, 郑史雄, 张宁, 等. 非平稳地震作用下强非线性结构动力可靠度分析[J]. 振动与冲击, 2020, 39(19): 121-129. CHEN Zhi-qiang, ZHENG Shi-xiong, ZHANG Ning, et al. Dynamic reliability analysis for strong nonlinear structures under non-stationary earthquake[J]. Journal of Vibration and Shock, 2020, 39(19): 121-129. [16] 田四朋, 唐国金, 雷勇军. 非平稳随机激励下基于动力可靠性的结构优化设计[J]. 振动与冲击, 2004, 23(3): 42-49. TIAN Si-peng, TANG Guo-jin, LEI Yong-jun. First passage failure based optimization of the structures under non-stationary random excitation[J]. Journal of Vibration and Shock, 2004, 23(3): 42-49. [17] GRECO R, MARANO G C, FIORE A. Nonstationary first threshold crossing reliability for linear system excited by modulated Gaussian process[J]. Shock and Vibration, 2018, 2018: 3685091 [18] 唐和生, 郭雪媛, 薛松涛. 基于广义子集模拟和自适应Kriging模型的非线性随机动力系统的时变可靠性分析[J]. 振动与冲击, 2021, 40(21): 47-54. TANG He-sheng, GUO Xue-yuan, XUE Song-tao. Time-varying reliability analysis of nonlinear stochastic dynamic systems based on generalized subset simulation and adaptive Kriging model[J]. Journal of Vibration and Shock, 2021, 40(21): 47-54. [19] 刘吉文, 秦东晨, 袁峰, 等. Kriging模型在滚动轴承剩余使用寿命预测中的应用[J]. 轴承, 2023, 网络首发: 2023-05-25. LIU Ji-wen, QIN Dong-chen, YUAN Feng, et al. Application of kriging model in the prediction of residual useful life of rolling bearings[J]. Bearing, 2023, online: 2023-05-25. [20] CHAN J, PAPAIOANNOU I, STRAUB D. Bayesian improved cross entropy method for network reliability assessment[J]. Structural Safety, 2023, 103: 102344. [21] BAI X, LING H, LUO X, et al. Reliability and availability evaluation on hydraulic system of ship controllable pitch propeller based on evidence theory and dynamic Bayesian network[J]. Ocean Engineering, 2023, 276, 15: 114125. [22] 韩哲鹏, 张笛. 基于动态贝叶斯网络的船舶电力推进系统可靠性评估[J]. 船舶工程, 2021, 43(11): 118-124. HAN Zhe-peng, ZHANG Di. Reliability evaluation of ship electric propulsion system based on dynamic Bayesian network[J]. Ship Engineering, 2021, 43(11): 118-124. [23] LI H, SOARES C G, HUANG H. Reliability analysis of a floating offshore wind turbine using Bayesian networks[J]. Ocean Engineering, 2020, 217: 107827. [24] FAN S, BLANCO-DAVIS E, YANG Z, et al. Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network[J]. Reliability Engineering & System Safety, 2020, 203:107070. [25] 李兆军, 蔡敢为, 杨旭娟, 等. 混流式水轮发电机组主轴系统非线性全局耦合动力学模型[J]. 机械强度, 2008, 30(2): 175-183. LI Zhao-jun CAI Gan-wei YANG Xu-juan, et al. Nonlinear global coupling equations of a main shaft system of hydraulic turbing-generator units[J]. Journal of Mechanical Strength, 2008, 30(2): 175-183. [26] 王利英, 孙中伟. EMD在LabVIEW中的实现及其在水轮机主轴振动信号分析中的应用[J]. 水电能源科学, 2017, 35(2): 185-188. WANG Li-ying, SUN Zhong-wei. LabVIEWT reliabilition of EMD and its application in vibration signal analysis of turbine main shaft[J]. Water Resources and Power, 2017, 35(2): 185-188. [27] QIN J, LI Z. Reliability and sensitivity analysis method for a multistate system with common cause failure[J]. Complexity, 2019, 2019(4): 1-8. [28] WANG Y J, LI Z J, LI T H, et al. A mathematical model of the hydrodynamic pressure acting on a turbine runner blade under the rotor-stator interaction based on the quasi-three-dimensional finite element method[J]. Mathematical Problems in Engineering, 2021, 2021: 6657812. [29] MASRI S F, CAFFREY J P, LI H. Transient response of MDOF systems with inerters to nonstationary stochastic excitation[J]. Journal of Applied Mechanics Transactions of the Asme, 2017, 84(10): 101003. [30] LAUNDER D E, SPALDING D B. Lectures in mathematical models of turbulence[M]. London: Academic press 1972. [31] 王汉平, 张哲, 李倩. 路面时域模拟的谐波叠加组分中相位角的相干性研究[J]. 北京理工大学学报. 2019, 39(10): 1034-1038. WANG Han-ping, ZHANG Zhe, LI Qian. Coherence of phase of harmonic superposition components in time domain simulation of road roughness for right and left wheel tracks[J]. Transactions of Beijing Institute of Technology, 2019, 39(10): 1034-1038. [32] LI Z J, HENG X, LI T H, et al. Dynamic equation and response of turbine runner blade under flow excitation[J]. Advances in Mechanical Engineering, 2018, 10(4): 1-9. [33] 苏成, 黄欢, 徐瑞, 等. 大规模非线性系统随机振动显式迭代Monte Carlo模拟法[J]. 振动工程学报, 2014, 27(2): 159-165. SU Cheng, Huang Huan, XU Rui, et al. Random vibration analysis of large-scale systems by explicit iterative Monte Carlo simulation method[J]. Journal of Vibration Engineering, 2014, 27 (2): 159-165. [34] SU C, HUANG H, MA H T, et al. Explicit MCS for random vibration of hysteretic systems by an explicit iteration approach[J]. Earthquakes and Structures, 2014, 7(2): 119-139. [35] LI Z J, WANG Y J, LI T H. The dynamic characteristics of the ultimate strength of a turbine runner blade under hydraulic excitation[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 24(41): 3127-3137. [36] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. TNN, 2011, 22(2): 199-210. [37] YUN W Y, LU Z Z, ZHOU Y C, et al. AK-SYSi: an improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function[J]. Structural and Multidisciplinary Optimization, 2019, 59: 263-278. [38] 杨化动, 史宗杰. 基于共因失效的多态系统灰色贝叶斯网络可靠性分析模型[J]. 中国机械工程学报, 2020, 18(5), 390-394. YANG Hua-dong, SHI Zong-jie. Grey Bayesian network model for reliability analysis of multi-state systems based on common cause failure[J]. Chinese Journal of Construction Machinery, 2020, 18(5), 390-394. [39] 古莹奎, 余东平, 张全新. 基于UPM的柴油机冷却系统共因失效分析[J]. 中国安全科学学报, 2017, 27(10): 68-74. GU Ying-kui, YU Dong-ping, ZHANG Quan-xin. UPM based analysis of common cause failures in diesel engine cooling system[J]. China Safety Science Journal, 2017, 27(10): 68-74. [40] 广西电力试验研究院, 广西大学, 大唐岩滩水电厂. 岩滩电厂3号机组转轮叶片动态应力测试及裂纹原因分析报告[R]. 南宁: 广西电力试验研究院, 1998. GUANGXI ELECTRIC POWER TESTING RESEARCH INSTITUTE, GUANGXI UNIVERSITY, YANTAN HYDROPOWER PLANT. Dynamic stress test and crack analysis report of runner blade of unit 3 of Yantan power plant[R]. Nanning: Guangxi electric power testing research institute, 1998. [41] WANG D, DENG Z. Handbook of fracture toughness data for metallic materials[J]. Metallurgical analysis and testing (metallurgical physical testing section), 1985, (5): 58-64. [42] KANG J, ZHANG J, LIU B, et al. Improved thermal stress analysis for castings[J]. International Journal of Cast Metals Research, 2008, 21(1-4): 324-329.
PDF(1626 KB)

Accesses

Citation

Detail

Sections
Recommended

/