Identification of low-damping resonance characteristics and the high-bandwidth control of a piezo-positioning stage

LIU Haotian1, ZHANG Guilin1, ZHOU Kemin2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (18) : 287-296.

PDF(2193 KB)
PDF(2193 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (18) : 287-296.

Identification of low-damping resonance characteristics and the high-bandwidth control of a piezo-positioning stage

  • LIU Haotian1, ZHANG Guilin1, ZHOU Kemin2
Author information +
History +

Abstract

This paper studies the limitations of reducing low-damping resonance characteristics on the tracking bandwidth of piezo-positioning stages. Firstly, based on the linearization of the Prandtl-Ishlinskii inverse model, the impulse response-based Hankel matrix system identification method is applied to the identification of linear dynamic characteristics of piezo-positioning stages, in which an improved method of correlation function calculation is proposed to further improve the accuracy of the identification of the low-damping resonance frequency band. Secondly, based on the transfer function model obtained from the identification, the zero-pole pair elimination plus overshoot compensator method is used to design the notch filter to compensate the low-damping anti-resonance and resonance characteristics, and the PI controller is designed based on the series trap to improve the closed-loop robustness and tracking performance. Finally, the experimental results show that the closed-loop bandwidth of the PI controller is 97Hz, and the closed-loop bandwidth of the PI controller with the notch filter is 244Hz. Due to the addition of the notch filter, the closed-loop bandwidth has been increased by 151.5%, thus illustrating the validity of the identification and control method of this paper.

Key words

piezo-positioning stages / resonance characteristics / correlation function / Hankel matrix / notch filter

Cite this article

Download Citations
LIU Haotian1, ZHANG Guilin1, ZHOU Kemin2. Identification of low-damping resonance characteristics and the high-bandwidth control of a piezo-positioning stage[J]. Journal of Vibration and Shock, 2024, 43(18): 287-296

References

[1] 刘英想,邓杰,常庆兵,等. 压电驱动技术研究进展与展望[J]. 振动.测试与诊断,2022, 42(6): 1045-1061.
LIU Yingxiang, DENG Jie, CHANG Qingbing, et al. Research progress and prospects of piezoelectric driving technology [J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42(6): 1045-1061.
[2] NIKOOIENEJAD N, ALIPOUR A, MAROUFI M, et al. Video-Rate Non-Raster AFM Imaging With Cycloid Trajectory[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2): 436-447.
[3] 杜刚,康晓旭,曾江涛,等. 多层压电驱动器在光刻机中的应用[J]. 激光与光电子学进展, 2022, 59(9): 403-412.
DU Gang, KANG Xiaoxu, ZENG Jiangtao, et al.  Application of Multilayer Piezoelectric Actuator in Lithography Scanners [J]. Laser & Optoelectronics Progress, 2022, 59(9): 403-412.
[4] MOHITH S, UPADHYA A R, NAVIN K P, et al. Video-Rate Non-Raster AFM Imaging With Cycloid Trajectory[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2): 436-447.
[5] GU G Y, ZHU L M. Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation[J]. Sensors and Actuators A: Physical, 2013, 197(1): 76-87.
[6] WANG Z S, XU R, WANG L N, et al. Finite-time adaptive sliding mode control for high-precision tracking of piezo-actuated stages[J]. ISA Transactions, 2022, 129: 436-445.
[7] JIAN Y P, HUANG D Q, LIU J B, et al. High-Precision Tracking of Piezoelectric Actuator Using Iterative Learning Control and Direct Inverse Compensation of Hysteresis[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 368-377.
[8] 周民瑞, 周振华, 刘鑫等. 压电执行器改进Bouc-Wen模型及其定位补偿控制研究[J]. 振动与冲击, 2023, 42(10): 155-164.
ZHOU Minrui, ZHOU Zhenhua, LIU Xin, et al.  Improved Bouc-Wen model of piezoelectric actuator and its positioning compensation control study[J]. Journal of Vibration and Shock, 2023, 42(10): 155-164.
[9] GUO Y X, MAO J Q, ZHOU K M. Rate-Dependent Modeling and H∞ Robust Control of GMA Based on Hammerstein Model With Preisach Operator[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6): 2432-2439.
[10] 温盛军, 李亮, 喻俊等. 迟滞与蠕变耦合压电系统的建模及补偿方法[J]. 振动与冲击, 2023, 42(7): 25-32.
WEN Shengjun, LI Liang, YU Jun, et al.  Modeling and compensation method of hysteresis-creep coupled piezoelectric system[J]. Journal of Vibration and Shock, 2023, 42(7): 25-32.
[11] 黄涛,罗治洪,陶桂宝,等. 压电定位平台Hammerstein建模与反馈线性化控制[J]. 光学精密工程,2022, 30(14): 1716-1724.
HUANG Tao, LUO Zhihong, TAO Guibao, et al.  Hammerstein modeling and feedback linearization control for
piezoelectric positioning stage [J]. Optics and Precision Engineering, 2022, 30(14): 1716-1724. 
[12] 宋帅官,杨依领,吴高华,等. 压电微操作器的混合灵敏度H∞控制[J]. 压电与声光,2021, 43(5): 651-656.
SONG Shuaiguan, YANG Yiling, WU Gaohua, et al.  Mixed Sensitivity H∞ Control for Piezoelectric Micromanipulator [J]. Piezoelectrics and Acoustooptics, 2021, 43(5): 651-656. 
[13] 潘海鸿,吴锡鹏,丁可帅,等. 基于位置闭环的制振陷波器改进和参数整定[J]. 机床与液压,2023, 51(4): 48-52.
PAN Haihong, WU Xipeng, DING Keshuai, et al. Improvement and parameter tuning of vibration suppression filter based on position closed loop [J].Machine Tool & Hydraulics, 2023, 51(4): 48-52.
[14] 龙丁,卢少武,唐小琦,等. 基于模型结构的伺服谐振陷波器参数离线整定[J]. 组合机床与自动化加工技术,2019(10): 115-119.
LONG Ding, LU Shaowu, TANG Xiaoqi, et al. Off-line Parameter Tuning of Resonance Notch Filter in Servo System
Based on Model Structure [J].Modular Machine Tool & Automatic Manufacturing Technique, 2019(10): 115-119.
[15] 卢洁莹,苏为洲. 天线伺服系统的快速辨识算法[J]. 控制理论与应用,2019, 36(8): 1329-1335.
LU Jieying, SU Weizhou. A fast algorithm of system identification for antenna servo systems [J].Control Theory & Applications, 2019, 36(8): 1329-1335.
[16] 邓永停,李洪文,陈涛. 2 m级望远镜跟踪架控制系统动态性能分析[J]. 光学精密工程,2018, 26(3): 654-661.
DENG Yongting, LI Hongwen, CHEN Tao. Dynamic analysis of two meters telescope mount control system [J].Optics and Precision Engineering, 2018, 26(3): 654-661.
[17] JOHAN S, KEITH G, MAARTEN S. Nonparametric Data-Driven Modeling of Linear Systems: Estimating the Frequency Response and Impulse Response Function[J]. IEEE Control Systems Magazine, 2018, 38(4): 49-88.
[18] 闻成,谭敏哲,卢洁莹,等.具有柔性特性的机电伺服系统辨识[J]. 控制理论与应用,2023, 40(4): 663-672.
WEN Cheng, TAN Jiuzhe, LU Jieying, et al. Identification of electromechanical servo systems with flexible characteristics [J].Control Theory & Applications, 2023, 40(4): 663-672.
[19] KLAUS K. Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl-Ishlinskii Approach[J]. European Journal of Control, 2003, 9(4): 407-418.
[20] 王泽锴, 娄军强, 陈特欢等. 压电致动的谐振式水下柔性结构动态迟滞建模及前馈补偿[J]. 振动与冲击, 2023, 42(1): 115-122.
WANG Zekai, LOU Junqiang, CHEN Tehuan, et al. Dynamic hysteresis modeling and feedforward compensation of MFC actuatedresonant underwater flexible structures [J].Journal of Vibration and Shock, 2023, 42(1): 115-122.
[21] BAI E. Decoupling the Linear and Nonlinear Parts in Hammerstein Model Identification[J]. Automatica, 2004, 40(4): 671-676.
[22] BUTCHER M, GIUSTINIANI A, MASI A. On the identification of Hammerstein systems in the presence of an input hysteretic nonlinearity with nonlocal memory: Piezoelectric actuators – an experimental case study[J]. Physica B: Condensed Matter, 2016, 486(1): 101-105.
[23] CHEN C T. Linear System Theory and Design. New York: Oxford University Press, 1999.
[24] 马宏伟,须颖,安冬,等. 基于三段PI模型的压电驱动器迟滞补偿方法[J]. 纳米技术与精密工程,2017, 15(1): 53-60.
MA Hongwei, XU Ying, AN Dong, et al. Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model [J].Nanotechnology and Precision Engineering, 2017, 15(1): 53-60.
[25] SALAPAKA S, SEBASTIAN A, CLEVELAND J P, et al. High bandwidth nano-positioner: A robust control approach[J]. Review of scientific instruments, 2002, 73(9): 3232-3241.
PDF(2193 KB)

Accesses

Citation

Detail

Sections
Recommended

/