Bearing fault classification diagnosis based on group-sparsity learning and AVOA-XGBoost

ZHANG Jixiang1, ZHANG Mengjian2, WANG Deguang1, YANG Ming1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (18) : 96-105.

PDF(3259 KB)
PDF(3259 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (18) : 96-105.

Bearing fault classification diagnosis based on group-sparsity learning and AVOA-XGBoost

  • ZHANG Jixiang1,ZHANG Mengjian2,WANG Deguang1,YANG Ming1
Author information +
History +

Abstract

In response to the challenge of low accuracy of bearing fault classification under strong background noises in industrial equipment, a bearing fault classification method based on group-sparsity learning and African vultures optimization algorithm-extreme gradient boosting (AVOA-XGBoost) is proposed. First, the bearing vibration signals are reconstructed using group-sparsity representation, which reduces the noise level and characterizes fault impulses more effectively. Then, time-domain, frequency-domain, and entropy features are extracted from the reconstructed signals and the feature set is constructed. Finally, the super parameters of XGBoost are adaptively adjusted by AVOA, which establishes a robust XGBoost for efficient bearing fault classification diagnosis. Experimental results demonstrate that the signals reconstructed by group-sparsity learning exhibit stronger fault characteristic representation, AVOA-XGBoost achieves higher classification accuracy compared with traditional machine learning models, and the proposed method can effectively diagnose the types and degrees of bearing faults.

Key words

bearing fault diagnosis / group-sparsity learning / feature extraction / African vulture optimization algorithm / XGBoost

Cite this article

Download Citations
ZHANG Jixiang1, ZHANG Mengjian2, WANG Deguang1, YANG Ming1. Bearing fault classification diagnosis based on group-sparsity learning and AVOA-XGBoost[J]. Journal of Vibration and Shock, 2024, 43(18): 96-105

References

[1] Song L, Yan R. Bearing fault diagnosis based on cluster-contraction stage-wise orthogonal-matching-pursuit[J]. Measurement, 2019, 140: 240-253. 
[2] Zhao D, Wang T, Chu F. Deep convolutional neural network based planet bearing fault classification[J]. Computers in Industry, 2019, 107: 59-66.
[3] Randall R B, Antoni J. Rolling element bearing diagnostics—a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2): 485-520.
[4] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms[C]// Proceedings of the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing. Grado: IEEE, 2003: 8-11.
[5] Peng Z K, Chu F L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[J]. Mechanical Systems and Signal Processing, 2004, 18(2): 199-221.
[6] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
[7] 刘建昌, 权贺, 于霞, 等. 基于参数优化 VMD 和样本熵的滚动轴承故障诊断[J]. 自动化学报, 2022, 48(3): 808-819.
Liu Jian-Chang, Quan He, Yu Xia, et al. Rolling bearing fault diagnosis based on parameter optimization VMD and sample entropy[J]. Acta Automatica Sinica, 2022, 48(3): 808-819.
[8] 韩争杰, 牛荣军, 马子魁, 等. 基于注意力机制改进残差神经网络的轴承故障诊断方法[J]. 振动与冲击, 2023, 42(16): 82-91.
Han Zheng-Jie, Niu Rong-Jun, Ma Zi-Kui, et al. Bearing fault diagnosis methods based on an attentional-mechanism improved residual neural network[J]. Journal of Vibration and Shock, 2023, 42(16): 82-91.
[9] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[10] Zhao Z, Wu S, Qiao B, et al. Enhanced sparse period-group lasso for bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 66(3): 2143-2153.
[11] Zheng K, Li T, Su Z, et al. Sparse elitist group lasso denoising in frequency domain for bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7): 4681-4691.
[12] Dai J, So H C. Group-sparsity learning approach for bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2021, 18(7): 4566-4576.
[13] Han T, Zhang L, Yin Z, et al. Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine[J]. Measurement, 2021, 177: 109022.
[14] 刘东川, 邓艾东, 赵敏, 等. 基于改进深度森林的旋转机械故障诊断方法[J]. 振动与冲击, 2022, 41(21): 19-27.
Liu Dong-Chuan, Deng Ai-dong, Zhao Min, et al. Fault diagnosis method of rotating machinery based on improved deep forest model[J]. Journal of Vibration and Shock, 2022, 41(21): 19-27.
[15] 于飞, 樊清川, 宣敏. 结合振动特征优选和GWOA- XGBoost的电机轴承故障诊断[J]. 国防科技大学学报, 2023, 45(3): 99-107.
Yu Fei, Fan Qing-Chuan, Xuan Min. Motor bearing fault diagnosis by combining vibration feature optimization and GWOA-XGBoost[J]. Journal of National University of Defense Technology, 2023, 45(3): 99-107.
[16] Van Erven T, Harremos P. Rényi divergence and Kullback-Leibler divergence[J]. IEEE Transactions on Information Theory, 2014, 60(7): 3797-3820.
[17] Thom H C S. A note on the gamma distribution[J]. Monthly weather review, 1958, 86(4): 117-122.
[18] Chen T, Guestrin C. Xgboost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD  International Conference on Knowledge Discovery and Data Mining. California: ACM, 2016: 785-794. 
[19] Abdollahzadeh B, Gharehchopogh F S, Mirjalili S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: 107408.
[20] Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102.
[21] Chen W, Wang Z, Xie H, et al. Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2): 266-272.
PDF(3259 KB)

Accesses

Citation

Detail

Sections
Recommended

/