Vibration characteristics of a rocket engine flow pipeline under external excitation

SU Yong1,HE Jiang2,ZHANG Miao2,GONG Wuqi1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (2) : 60-70.

PDF(3719 KB)
PDF(3719 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (2) : 60-70.

Vibration characteristics of a rocket engine flow pipeline under external excitation

  • SU Yong1,HE Jiang2,ZHANG Miao2,GONG Wuqi1
Author information +
History +

Abstract

In addition to the self-excited excitation of high-pressure fluid in the tube, the kerosene pipeline in the liquid oxygen kerosene rocket engine is also subjected to external excitation such as external pressure pulsation and engine body vibration. Therefore, strong vibration often occurs, which has seriously threatened the safety of the rocket engine.In this paper, the vibration characteristics of the conveying pipeline are studied by using the established three-dimensional pipeline model including bellows, multi-section bends and other auxiliary structures, combined with the two-way fluid-solid coupling method.The results show that the low-frequency vibration of the pipeline is caused by the self-excited pressure pulsation of the fluid, and the high-frequency vibration is derived from the vibration of the engine body, while the external pressure pulsation excitation has no significant effect on the pipeline vibration.The visualization results show that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and the two bellows.Bellows, elbows, and supports have high stress values, making them risky positions vulnerable to structural failure that need to be focused on. The findings of this study are significant in a good way for rocket engine structural optimization.

Key words

Rocket engine / Vibration / External excitation / High-pressure / Fluid-structure Interaction

Cite this article

Download Citations
SU Yong1,HE Jiang2,ZHANG Miao2,GONG Wuqi1. Vibration characteristics of a rocket engine flow pipeline under external excitation[J]. Journal of Vibration and Shock, 2024, 43(2): 60-70

References

[1] 徐云飞, 李锋, 邓长华, 等. 液体火箭发动机充液导管流固耦合动力学特性[J]. 航空动力学报, 2017, 32(6): 1523-1529. XU Yunfei, LI Feng, DENG Changhua, et al. Dynamic characteristics of fluid-filled pipe in liquid rocket engines considering fluid-structure interaction[J]. Journal of Aerospace Power, 2017, 32(6): 1523-1529. [2] 李帅军. 管路系统流固耦合动力学计算及特性分析[D], 哈尔滨工程大学, (2015). LI S J. Dynamic Analysis of Fluid-Structure Interaction of Pipe Systems Conveying Fluid[D], Harbin Engineering University, (2015). [3] Li, Z., Song, G. & Chen, Y. Experimental study on bird-wing-shaped suppression device for vortex-induced vibration of deep water risers[J]. Ocean Engineering , 2020, 213(2): 107669. [4] LIANG Z,LI S S,TIAN J L. et al. Vibration cause analysis and elimination of reciprocating compressor inlet pipelines[J]. Engineering Failure Analysis 48, 272-282, doi:10.1016/j.engfailanal, 2015, 48: 272-282. [5] Zhang, X., Liu, W., Zhang, Y. & Zhao, Y. Experimental Investigation and Optimization Design of Multi-Support Pipeline System[J]. Chinese Journal of Mechanical Engineering ,2021, 34(2):135-149. [6] 刘旭东,孙伟. 多卡箍支撑的管路系统振动特性半解析建模及支撑位置优化[J]. 振动与冲击,2021,40(19):32-40. LIU Xudong, SUN Wei. Semi-analytical dynamic modeling and support location optimization of pipeline system with multi-clamp support[J]. Journal of Vibration and Shock, 2021, 40(19):32-40. [7] Gao, P., Yu, T., Zhang, Y., Wang, J. & Zhai, J. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review[J]. Chinese Journal of Aeronautics , 2021, 34(4): 32. [8] Jia, M., Wei, Y., Yan, C., Jiang, P. & Xu, R. Experimental study of gas-solid flow characteristics and flow-vibration coupling in a full loaded inclined pipe[J]. Powder Technology , 2021, 384(18):379-386. [9] Adamkowski, A., Henclik, S., Janicki, W. & Lewandowski, M. The influence of pipeline supports stiffness onto the water hammer run[J]. European Journal of Mechanics - B/Fluids , 2017, 61(Pt.2):297-303. [10] Liu, E. B., Wang, X. J., Zhao, W. W., Su, Z. Y. & Chen, Q. K. Analysis and Research on Pipeline Vibration of a Natural Gas Compressor Station and Vibration Reduction Measures[J]. Energ Fuel , 2020, 35(1):479-492, [11] Liu, E., Lian, D., Zheng, H., Su, Z. & Chen, Q. Research on Abnormal Vibration and Vibration Reduction Measures of a Natural Gas Compressor Station: A Case Study of the JYG Compressor Station[J]. Energ Fuel , 2022,36(2):897-909. [12] EL-BORGI S, ALRUMAIHI A, RAJENDRAN P, et al. Model updating of a scaled piping system and vibration attenuation via locally resonant bandgap formation[J]. International Journal of Mechanical Sciences, 2021, 194(1). [13] HU B,ZHU F L,YU D L,et al. Impact vibration properties of locally resonant fluid-conveying pipes[J]. Chinese Physics B , 2020, 29(12):356-365. [14] Chen, Y., Jin, X., Luo, M., Cheng, P. & Wang, S. Vibration reduction methods of large-scale wind turbines based on system-TMD coupled algorithm[J]. Ocean Engineering , 2021,226(Apr.15):108832.1-108832.15. [15] Wu, J. & Zheng, S. Y. Field Measurement and Numerical Study of the Vibration in the Pipeline of Centrifugal Compressor[J]. Journal of pressure vessel technology , 2019,141(5). [16] Wu, J., Li, C., Zheng, S. & Gao, J. Study on Fluid-Structure Coupling Vibration of Compressor Pipeline[J]. Shock and Vibration , 2019, 2019(Pt.8):8624324.1-8624324.12. [17] Wu, J., Zheng, S., Wang, C. & Yu, Z. Study on pipeline self-excited vibration using transient fluid-structure coupling method[J]. The International Journal of Advanced Manufacturing Technology , 2020, 107, 4055-4068. [18] Li, Q., Liu, P. & He, G. Fluid–solid coupled simulation of the ignition transient of solid rocket motor[J]. Acta Astronautica , 2015, 110, 180-190. [19] Liu, P., Li, F., Chen, B. & Zhang, S. Theoretical investigations on flow-induced vibration of fuel rods with spacer grids in axial flow[J]. Annals of Nuclear Energy , 2019, 133, 916-923. [20] Kim, T.-Y., Yoon, S.-W., Cho, J.-H., Kim, Y.-H. & Kim, M.-H. Vibration characteristics of filament wound composite tubes applied to the intermediate shaft in ship propulsion system[J]. Modern Physics Letters B , 2019, 33(1):1940029. [21] De Santis, D. & Shams, A. An advanced numerical framework for the simulation of flow induced vibration for nuclear applications[J]. Annals of Nuclear Energy , 2019, 130, 218-231. [22] 罗胜曦,何泽银,陶平安,等. 基于流固耦合的旋叶式压缩机排气阀片振动噪声预估与试验[J]. 振动与冲击,2022,41(19):266-273. LUO Shengxi, HE Zeyin, TAO Ping’an et al. Prediction and tests fbr Vibration and noise of exhaust ValVe plate of rotary Vane compressor based on nuid-structure interaction[J]. Journal of Vibration and Shock , 2022, 41(19):266-273. [23] Matta L M, Szasz G . Vibration and Fatigue Failures at Pipeline Facilities[C]. 2018 International Pipeline Conference. , Calgary, Alberta, Canada. Paper No: IPC2018-78176, V001T03A036; 13 pages. [24] 杨超,范士娟. 管材参数对输液管流固耦合振动的影响[J]. 振动与冲击,2011,30(7):210-213. YANG Chao, FAN Shijuan. Influence of pipe parameters on fluid-structure couped vibration of a fluid-conveying pipe[J]. Journal of Vibration and Shock, 2011, 30(7):210-213. [25]张春晋,孙西欢,李永业,等. 基于流固耦合的管道双车振动运移水力特性研究[J]. 振动与冲击,2020,39(3):161-167,177. ZHANG Chunjin, SUN Xihuan, LI Yongye,et al. Hydraulic characteristics of a piped double carriage’S vibrational transport based on fluid.structure interaction [J]. Journal of Vibration and Shock,2020,39(3):161-167,177. [26] JIANG Y Y,YOSHIMURA S, IMAI R,et al. Quantitative evaluation of flow-induced structural vibration and noise in turbomachinery by full-scale weakly coupled simulation[J]. Journal of Fluids and Structures , 2007, 23, 531-544. [27] Pittard, M. T., Evans, R. P., Maynes, R. D. & Blotter, J. D. Experimental and numerical investigation of turbulent flow induced pipe vibration in fully developed flow[J]. Review of Scientific Instruments , 2004, 75, 2393-2401. [28] Du, D., He, E., Huang, D. & Wang, G. Intense vibration mechanism analysis and vibration control technology for the combustion chamber of a liquid rocket engine[J]. Journal of Sound and Vibration , 2018, 437, 53-67. [29] Zhang, J., Wu, Q., Zhang, H., Zhao, X. & Wang, G. Numerical investigation on cavitation instability and flow-induced vibration of liquid rocket engine inducer[J]. Modern Physics Letters B , 2020, 34(15):558-. [30] Chen, S., Zhou, Y., Tang, Z. & Lu, S. Modal vibration response of rice combine harvester frame under multi-source excitation[J]. Biosystems Engineering , 2020, 194. [31] Lam, K., Gong, W. Q. & So, R. M. C. Numerical simulation of cross-flow around four cylinders in an in-line square configuration[J]. Journal of Fluids and Structures , 2008, 24, 34-57. [32] 朱竑祯. 充液复合材料管流固耦合振动问题研究[D], 南京航空航天大学, (2019). Zhu H Z,. Investigation on Fluid-Structure Interacted Vibrations of Fluid-Filled Composite Pipes[D]. Jiangsu: Nanjing University of Aeronautics and Astronautics, 2019. [33] Zhang, W.-m., Lu, X.-f., Wang, Z.-w. & Liu, Z. Effect of the main cable bending stiffness on flexural and torsional vibrations of suspension bridges: Analytical approach[J]. Engineering Structures , 2021, 240(6):112393. [34] 黄益民,刘伟,刘永寿,等. 充液管道模态的参数灵敏度及其共振可靠性分析[J]. 振动与冲击,2010,29(1):193-195. HUANG Yimin, LIU Wei, LIU Yongshou,et al. Analysis of parameter sensitivity and resonance reliability for fluid-filled pipeline [J]. Journal of Vibration and Shock, 2010, 29(1):193-195. [35] Al-Obaidi, A. R. Investigation on effects of varying geometrical configurations on thermal hydraulics flow in a 3D corrugated pipe[J]. International Journal of Thermal Sciences , 2022, 171, 107237-. [36] 钱志英,韩世泽,马为佳,等. 航天器振动试验中的频率漂移现象研究[J]. 航天器环境工程 , 2018, 35(4): 342-347. QIAN Zhiying, HAN Shize, MA Weijia, et al. Natural frequency drift in the vibration test of spacecraft[J]. Spacecraft Environment Engineering, 2018, 35(4): 342-347. [37] An, D. & Huang, W. Inherent mechanism of frequency drift affected by constraint conditions for rotary piezoelectric motors[J]. Review of Scientific Instruments , 2020, 91(3):035002-. [38] 申军烽, 周春华, 虞自飞, 刘曌 & 封淑清. 卫星飞轮隔振系统频率漂移诱发低频共振现象. 振动、测试与诊断 [J], 2017, 37(1): 53-56. SHEN Junfeng,ZHOU Chunhua, YU Zifei, et al. Resonance in low frequency range induced by frequency translation of flywheel′s vibration isolation using for satellite[J]. Journal of Vibration,Measurement & Diagnosis, 2017, 37(1): 53-56. [39] Ainsworth, P. Flow-Induced Vibrations in Bellows[J]. Journal of Pressure Vessel Technology , 2009, 111(4): 402. [40] El-Souhily, B. M. Transverse vibration of corrugated pipes[J]. Alexandria engineering journal , 2018, 57(4): 2921-2928.
PDF(3719 KB)

525

Accesses

0

Citation

Detail

Sections
Recommended

/