Vibration isolation characteristics of wave impeding blocks in mitigating vibrations induced by 350 km/h high-speed trains moving in underground tunnels

WU Zaixin1, YUAN Zhe2, YANG Jianjin2, QU Shuai2, LOU Panming2, YANG Jizhong3, ZHU Shengyang2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (20) : 45-53.

PDF(3733 KB)
PDF(3733 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (20) : 45-53.

Vibration isolation characteristics of wave impeding blocks in mitigating vibrations induced by 350 km/h high-speed trains moving in underground tunnels

  • WU Zaixin1,YUAN Zhe2,YANG Jianjin2,QU Shuai2,LOU Panming2,YANG Jizhong3,ZHU Shengyang2
Author information +
History +

Abstract

he increasing speed of underground railways necessitates posed higher demands for controlling train-induced environmental vibrations. This study focuses on the vibration issues induced by trains running in tunnels at 350 km/h. Utilizing the vehicle-track coupled dynamics theory and finite element methods, a prediction model for train-induced vibrations in underground railways was built and subsequently validated through on-site vibration tests. The study comprehensively examines the influence of the width, depth, and material properties of wave impeding blocks (WIB) on vibration isolation performance. Results indicate that installing horizontal WIBs in the soil above tunnels significantly reduces ground vibrations caused by train movements. Notably, WIBs positioned close to the vibration source offer prominent isolation effects for vibrations above 5 Hz. The width and depth of the WIB directly correlate with its vibration isolation capability, though excessive dimensions may amplify distant ground vibrations. Among evaluated materials, porous polystyrene WIBs outperform rubber, fine sand, and C30 concrete in terms of vibration isolation, especially within the 5-200 Hz frequency range.

Key words

High-speed railway / Wave impeding block (WIB) / Train-induced ground vibration / Wheelset dropping test / Vibration control.

Cite this article

Download Citations
WU Zaixin1, YUAN Zhe2, YANG Jianjin2, QU Shuai2, LOU Panming2, YANG Jizhong3, ZHU Shengyang2. Vibration isolation characteristics of wave impeding blocks in mitigating vibrations induced by 350 km/h high-speed trains moving in underground tunnels[J]. Journal of Vibration and Shock, 2024, 43(20): 45-53

References

[1] O'BRIEN J, RIZOS D. A 3D BEM-FEM methodology for simulation of high speed train induced vibrations[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(4): 289-301.
[2] 邵鸣和. 高速列车运行于无砟轨道引起的地面振动数值模拟[D]. 成都: 西南交通大学, 2013.
SHAO Minghe. Numerical simulation of ground vibration induced by high-speed train on non-ballasted railway[D]. Chengdu: Southwest Jiaotong University, 2013. 
[3] 李亮, 张丙强, 杨小礼. 高速列车振动荷载下大断面隧道结构动力响应分析[J]. 岩石力学与工程报, 2005(23): 4259-4265.
LI Liang, ZHANG Bingqiang, YANG Xiaoli. Analysis of dynamic response of large cross-section tunnel under vibrating load induced by high speed train[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(23): 4259-4265.
[4] 曲村, 高亮, 辛涛等. 高速列车振动荷载作用下电缆隧道结构动力响应分析[J]. 振动与冲击, 2011, 30(3): 264-268.
QU Cun, GAO Liang, XIN Tao, et al. Dynamic response analysis of cable tunnel structure under vibratory load induced by high-speed train[J]. Journal of Vibration and Shock, 2011, 30(3): 264-268.
[5] 刘泳钢. 高速铁路引起的环境振动及隔振研究[D]. 四川: 西南交通大学, 2011. 
LIU Yonggang. Research on environmental vibration by high-speed railway and measures of vibration isolation [D]. Sichuan: Southwest Jiaotong University, 2011.
[6] 戴林发宝, 王广地, 高波. 高速列车振动下隧道周边砂土液化研究[J]. 地下空间与工程学报, 2012, 8(2): 5.
DAI Linfabao, WANG Guangdi, GAO Bo. Study of Sand Liquefaction under Vibration Load of High Speed Train[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(2): 5.
[7] 孙成龙. 高速铁路地下线环境振动预测与控制研究[D]. 北京交通大学, 2021.
SUN Chenglong. Prediction and control study on environmental vibration of underground lines in high-speed railway[D]. Beijing Jiaotong University, 2021.
[8] SCHMID G, CHOUW N, LE R. Shielding of structures from soil vibrations[J]. Soil Dynamics and Earthquake Engineering, 1991: 651-662.
[9] 王福彤, 陶夏新, 崔高航, 等. 地面城轨交通近轨道区域自由地表振动实测研究[J]. 振动与冲击, 2011, 30(5): 131-135.
WANG Futong, TAO Xiaxin, CUI Gaohang, et al. Test in situ for free ground vibration near urban railway line[J]. Journal of Vibration and Shock, 2011, 30(5): 131-135.
[10] 谢伟平, 高俊涛, 毛云. WIB用于地铁引发低频振动的减振分析[J]. 华中科技大学学报(城市科学版), 2009, 26(2): 1-4.
XIE Weiping, GAO Juntao, MAO Yun. WIB for mitigation of subway-induced low-frequency vibration[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2009, 26(2): 1-4. 
[11] GAO G Y, CHEN J, GU X Q, et al. Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading[J]. Soil Dynamics and Earthquake Engineering, 2017, 93: 99-112.
[12] Schmid G, Chouw N, Le R. Shielding of structures from soil vibrations[J]. Proceedings of Soil Dynamics and Earthquake Engineering V, Computational Mechanics Publications, 1992: 651-662.
[13] 高广运, 何俊锋, 李宁等. 饱和地基上列车运行引起的地面振动隔振分析[J]. 岩土力学, 2011, 32(07): 2191-2198.
GAO Guangyun, HE Junfeng, LI Ning, et al. Analysis of isolating ground vibration induced by trains running on saturated ground[J]. Rock and Soil Mechanics, 2011, 32(07): 2191-2198.
[14] 高广运, 王非, 陈功奇等. 轨道交通荷载下饱和地基中波阻板主动隔振研究[J]. 振动工程学报, 2014, 27(03): 433-440.
GAO Guangyun, WANG Fei, CHEN Gongqi, et al. Active vibration of the saturated ground with wave impedence block inside and under the load of the travelling train[J]. Journal of Vibration Engineering, 2014, 27(03): 433-440.
[15] 李宁, 高广运, 郑建国. 水平激振下波阻板主动隔振试验与数值计算[J]. 地下空间与工程学报, 2010, 6(01): 90-95.
LI Ning, GAO Guangyun, ZHENG Jianguo. Field experimental and numerical study on active vibration isolation by WIB under horizontal loading[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(01): 90-95.
[16] 周凤玺, 马强, 周志雄. 二维地基中空沟-波阻板联合隔振屏障分析[J]. 岩土力学, 2020, 41(12): 4087-4092+4115.
ZHOU Fengxi, MA Qiang , ZHOU Zhixiong. 2D analysis of vibration-isolation efficiency of an open trench-wave impedence block barrier[J]. Rock and Soil Mechanics, 2020, 41(12): 4087-4092+4115.
[17] 焦欧阳, 周凤玺, 王根强, 等. 公路交通荷载作用下波阻板隔振效果试验分析[J]. 噪声与振动控制, 2018, 38(01): 160-163.
JIAO Ouyang, ZHOU Fengxi, WANG Genqiang, et al. Experimental analysis of vibration isolation effects of wave impedance blocks under highway traffic loads[J]. Noise and Vibration Control,  2018,  38(01): 160-163.
[18] 孙雨明, 李伟, 高广运. Gibson地基波阻板隔振分析[J]. 西北地震学报, 2011, 33(01): 40-45.
SUN Yuming, LI Wei, GAO Guangyun. Analysis of vibration isolation using WIB for Gibson ground[J]. Northwestern Seismological Journal, 2011, 33(01): 40-45.
[19] CHEN F, TAKEMIYA H, HUANG M S. Prediction and mitigation analyses of ground vibrations induced by high speed train with 3-dimensional finite element method and substructure method[J]. Journal of Vibration and Control, 2011, 17(11): 1703-1720.
[20] 翟婉明. 车辆-轨道耦合动力学[M]. 第四版. 北京: 科学出版社, 2015.
ZHAI Wanming. Vehicletrack coupling dynamics[M]. Fourth Edition. Beijing: Science Press, 2015. 
[21] 朱胜阳. 高速铁路无砟轨道结构伤损行为及其对动态性能的影响[D]. 成都: 西南交通大学, 2015.
ZHU Shengyang. Damage behavior of high-speed railway ballastless track and its effect on structure dynamic performance[D]. Chengdu: Southwest Jiaotong University, 2015.
[22] 谷音, 刘晶波, 杜义欣. 三维一致粘弹性人工边界及等效粘弹性边界单元[J]. 工程力学, 2007, 24(12): 31-37.
GU Yin, LIU Jingbo, DU Yixin. 3D consistent viscous-spring artificial boundary and viscous-spring boundary element[J]. Engineering Mechanics, 2007, 24(12): 31-37.
[23] QU S, ZHAO L, YANG J, et al. Numerical analysis of engineered metabarrier effect on ground vibration induced by underground high-speed train[J]. Soil Dynamics and Earthquake Engineering, 2023, 164: 107580.
[24] 国家铁路局. 高速铁路无砟轨道不平顺谱 TB/T 3352-2014  [S]. 北京:  中国铁道出版社, 2014.
State Railway Administration. PSD of ballastless track irregularities of high-speed railway: TB/T 3352-2014 [S]. Beijing: China Railway Publishing House, 2014.
[25] 王澜. 轨道结构随机振动理论及其在轨道结构减振中的应用[D]. 北京: 铁道科学研究院, 1988.
WANG Lan. Random Vibration Theory of Railtrack Structure and It's Application in the Study of Railtrack Vibration Isolation[D]. Beijing: China Academy of Railway Science, 1988.
[26] 刘维宁, 马蒙. 地铁列车振动环境影响的预测、评估与控制[M]. 北京: 科学出版社, 2014.
LIU Weining, MA Meng.Metro train induced environmental vibrations: prediction, evaluation and control[M]. Beijing: Science Press, 2014.
PDF(3733 KB)

Accesses

Citation

Detail

Sections
Recommended

/