Experimental study and mechanical model of high vertical bearing capacity MRE bearings

L Yang1, ZHANG Fanxing1, ZHANG Yike2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (20) : 75-84.

PDF(3682 KB)
PDF(3682 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (20) : 75-84.

Experimental study and mechanical model of high vertical bearing capacity MRE bearings

  • L Yang1,ZHANG Fanxing1,ZHANG Yike2
Author information +
History +

Abstract

The vertical load-bearing capacity of Magneto-Rheological Elastomer (MRE) isolation bearings is low. However, vertical load has significantly influences on the mechanical performance of the MRE bearings, which limits the engineering applications of MRE bearings. By adding vertical rods to bear vertical loads and a constant magnetic field with permanent magnets, an isolation bearing with a structure of MRE sheets and steel plates alternately stacked and bi-directional adjustable shear stiffness was designed and built. The finite element method was used to analyze the effects of MRE layer thickness, permanent magnet thickness, and magnet placement on the bearing's magnetic circuit. The bearing has a core diameter of 60 mm, consisting of 26 layers of MRE and 25 layers of steel plates. Mechanical performance tests of the bearing were conducted under sinusoidal waves of different frequencies and amplitudes under different currents and weights. Based on the test results, the Particle Swarm Optimization algorithm was used to identify the parameters of the Bouc-Wen model of the bearing. The results show that the MRE bearing has a high vertical load bearing capacity and stable mechanical performance. The Bouc-Wen model can accurately describe the hysteresis characteristics of the bearing, and the fitting data is in good agreement with the experimental results.

Key words

MRE / Isolation bearing / Magnetic circuit optimization / Bouc-Wen model

Cite this article

Download Citations
L Yang1, ZHANG Fanxing1, ZHANG Yike2. Experimental study and mechanical model of high vertical bearing capacity MRE bearings[J]. Journal of Vibration and Shock, 2024, 43(20): 75-84

References

[1] Jangid R S, Kelly J M. Base isolation for near‐fault motions[J]. Earthquake engineering & structural dynamics, 2001, 30(5): 691-707.
[2] Mazza F, Vulcano A. Effects of near‐fault ground motions on the nonlinear dynamic re-sponse of base‐isolated RC framed buildings[J]. Earthquake engineering & structural dynamics, 2012, 41(2): 211-232.
[3] Chopra A K, Chintanapakdee C. Comparing response of SDF systems to near‐fault and far‐fault earthquake motions in the context of spectral regions[J]. Earthquake engineering & structural dynamics, 2001, 30(12): 1769-1789.
[4] Chen L, Jerrams S. A rheological model of the dynamic behavior of magnetorheological elastomers[J]. Journal of Applied Physics, 2011, 110(1): 013513.
[5] Wu J, Gong X, Fan Y, et al. Anisotropic polyurethane magnetorheological elastomer pre-pared through in situ polycondensation under a magnetic field[J]. Smart Materials and Structures, 2010, 19(10):105007.
[6] 许阳光, 龚兴龙,万强,等.磁敏智能软材料及磁流变机理[J]. 力学进展, 2015, 45(1): 461-495.
XU Yangguang, GONG Xinglong, WAN Qiang, et al. Magneto-sensitive smart soft material and magnetorheological mechanism[J]. Advances in Mechanics, 2015, 45(1): 461-495.
[7] Tian TF, Li WH, Alici G, et al. Microstruc-ture and magnetorheology of graphite-based MR elastomers[J]. Rheologica Acta, 2011, 50(9-10): 825-836.
[8] Li Y, Li J, Li W, et al. A state-of-the-art re-view on magnetorheological elastomer devices[J]. Smart Materials and Structures, 2014, 23(12):123001.
[9] Li WH, Zhang XZ and Du H, Magnetorheo-logical elastomers and their applications[M]. Ad-vanced Structured Materials, 2013, 11: 357–374.
[10] Shen Y, Golnaraghi MF and Heppler GR. Experimental research and modeling of magne-torheological elastomers[J]. Journal of Intelligent Materials Systems and Structures, 2004, 15: 27–35.
[11] Deng H, Gong X, Wang L. Development of an adaptive tuned vibration absorber with mag-netorheological elastomer[J]. Smart materials and structures, 2006, 15(5): 111-116.
[12] Padalka O, Song HJ, Wereley NM, et al. Stiffness and Damping in Fe, Co, and Ni Nan-owire-Based Magnetorheological Elastomeric Composites[J]. IEEE Transactions on Magnetics, 2010, 46(6): 2275-2277.
[13] Chen L, Gong XL, Li WH. Microstructures and viscoelastic properties of anisotropic magne-torheological elastomers[J]. Smart Materials and Structures, 2007, 16(6): 2645-2650.
[14] Zhou GY. Shear properties of a magnetorhe-ological elastomer[J]. Smart Materials and Struc-tures, 2003, 12: 139-146.
[15] Ginder JM, Clark SM, Schlotter WF, et al. Magnetostrictive phenomena in magnetorheolog-ical elastomers[J]. International Journal of Mod-ern Physics B, 2002, 16(17-18): 2412-2418.
[16] 毕凤荣,曹荣康,Xu Wang等.基于MRE的变刚度变阻尼减振器设计研究[J].振动与冲击,2019,38(03):192-198.
BI Fengrong, CAO Rongkang, XU Wang, et al. Variable stiffness and damping shock absorber design based on MRE[J]. Journal of Vibration and Shock, 2019,38(03):192-198.
[17] Du H, Li W, Zhang N. Semi-active variable stiffness vibration control of vehicle seat suspen-sion using an MR elastomer isolator[J]. Smart Materials and Structures, 2011, 20(10): 105003.
[18] 杨志荣,王岩,饶柱石,于洪亮.船舶齿轮箱用磁流变弹性体动力吸振器的仿真研究[J]. 船舶力学, 2020, 24(02): 236-242.
YANG Zhirong, WANG Yan, RAO Zhushi, YU Hongliang. Simulation of dynamic vibration ab-sorber based on magneto-rheological elastomer for marine gearbox[J]. Journal of Ship Mechanics. 2020, 24(02): 236-242.
[19] 陈泽强, 朱炜, 芮筱亭, 等.基于磁流变弹性体的坦克发动机减振研究[J]. 噪声与振动控制, 2017, 37(1): 72-75+116.
CHEN Zeqiang, ZHU Wei, RUI Xiaoting, et al. Study on Vibration Reduction of the Tank Engines based on MRE[J]. Noise and Vibration Control. 2017, 37(1): 72-75+116.
[20] Jung HJ, Eem SH, Jang DD, et al. Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(13): 1439-1450.
[21] Behrooz M, Wang X, Gordaninejad F. Per-formance of a new magnetorheological elastomer isolation system[J]. Smart Materials and Struc-tures, 2014, 23(4): 045014. 
[22] 索思, 徐赵东, 朱俊涛. 基于磁流变弹性体的平台竖向隔振研究[J]. 地震工程与工程振动, 2015, 35(5): 61-67.
SU Si, XU Zhaodong, ZHU Juntao. Study on vertical vibration isolation of platform based on magnetorheological elastomer[J]. Earthquake Engineering and Engineering Vibration Earth-quake Engineering and Engineering Vibration, 2015, 35(5): 61-67.
[23] 涂建维, 任伟, 吴平.叠层型磁流变弹性体智能隔震支座及其磁场有限元分析[J]. 噪声与振动控制, 2010, 30(5): 169-172.
TU Jianwei, REN Wei, WU Ping. Magnetic Finite Element Analysis of the Intelligent Laminated MRE Isolator[J]. Noise and Vibration Control. 2010, 30(5): 169-172.
[24] Sun S, Deng H, Yang J, et al. An adaptive tuned vibration absorber based on multilayered MR elastomers[J]. Smart Materials and Structures, 2015, 24(4):045045.
[25] 马伟佳,黄学功,汪辉兴等.磁流变弹性体隔振器隔振控制与实验研究[J].振动与冲击,2020,39(08):118-122.
MA Jiawei, HUANG Xuegong, WANG Huixing, et al. Vibration isolation control and an experi-mental study of magnetorheological elastomer isolators[J]. Journal of Vibration and Shock, 2020, 39(08): 118-122.
[26] Yang J, Sun SS, Du H, et al. A novel mag-netorheological elastomer isolator with negative changing stiffness for vibration reduction[J]. Smart Materials and Structures, 2014, 23(10): 105023.
[27] Li Y, Li J, Tian T, et al. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control[J]. Smart Materials and Structures, 2013, 22(9): 095020.
[28] Sun S, Deng H, Yang J, et al. An adaptive tuned vibration absorber based on multilayered MR elastomers[J]. Smart Materials and Structures, 2015, 24(4):045045.
[29] 王鹏,杨绍普,刘永强等.一种磁流变弹性体模型参数识别新方法及其应用研究[J].振动与冲击,2022,41(11):189-198+224.
WANG Peng, YANG Shaopu, LIU Yongqiang, et al. A new method for parametric identification of MRE model and its application[J]. Journal of Vibration and Shock, 2022,41(11):189-198+224.
[30] Yang J, Sun SS, Du H, et al. A novel mag-netorheological elastomer isolator with negative changing stiffness for vibration reduction[J]. Smart Materials and Structures, 2014, 23(10): 105023.
[31] 胡国良,林豪,李刚.基于粒子群算法和最小二乘法的磁流变阻尼器Bouc-Wen模型参数辨识方法[J].磁性材料及器件, 2020, 51(5): 30-35+42.
HU Guoliang, LIN Hao, LI Gang. Parameter identification for Bouc-Wen Model of magne-torheological damper based on particle swarm optimization and least square method[J]. Journal of Magnetic Materials and Devices, 2020,51(5):30-35+42.
PDF(3682 KB)

Accesses

Citation

Detail

Sections
Recommended

/