Frequency splitting of parametric excitation vibration of rotating periodic structures

GAO Peng1, WEI Zhenhang1, WANG Shiyu1, 2, 3

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (21) : 253-262.

PDF(3514 KB)
PDF(3514 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (21) : 253-262.

Frequency splitting of parametric excitation vibration of rotating periodic structures

  • GAO Peng1, WEI Zhenhang1, WANG Shiyu1,2,3
Author information +
History +

Abstract

Rotationally periodic structures are widely used in mechanical engineering fields, where parametric vibration is a common form of vibration. A time-varying partial differential elastic dynamic model is proposed by using the time-spatial symmetry of the periodic structures. The mathematical model of ordinary differential multi-freedom parametric vibration is obtained by using Galerkin method and modal orthogonality, based on which the vibration behaviors of the rotationally periodic structures induced by the time-varying stiffness excitation are examined. In order to study the frequency splitting of the parametric vibration, the modulation feedback principle is employed to analyze the dynamic response for different feedback types, and the relationships between parameter combinations, including the time-varying stiffness number and wavenumber, and frequency splitting are revealed. In addition, the excitation frequencies for corresponding to the parametric instability for different feedback types are predicted. Finally, the parametric instability regions and the response frequencies for different feedback types are verified by the Floquét theory and the Runge-Kutta method, respectively.

Key words

rotationally periodic structures / parametric vibrations / time-varying stiffness / modulation feedback / frequency splitting

Cite this article

Download Citations
GAO Peng1, WEI Zhenhang1, WANG Shiyu1, 2, 3. Frequency splitting of parametric excitation vibration of rotating periodic structures[J]. Journal of Vibration and Shock, 2024, 43(21): 253-262

References

[1] 董剑宁, 黄允凯, 金龙等. 高速永磁电机设计与分析技术综述 [J]. 中国电机工程学报, 2014, 34(27): 4640-4653.
Dong Jianning, Huang Yunkai, Jin Long, et al. Review on high-speed permanent magnet machines including design and analysis technologies [J]. Proceedings of the CSEE, 2014, 34(27): 4640-4653.
[2] 许华超, 秦大同, 周建星. 内激励作用下行星传动系统振动响应研究 [J]. 振动与冲击, 2017, 36(21): 265-270.
Xu Huachao, Qin Datong, Zhou Jianxing. Vibration responses of planetary gear sets under the internal meshing excitation [J]. Journal of Vibration and Shock, 2017, 36(21): 265-270.
[3] 王梓, 朱才朝. 高速滚动轴承-转子系统非线性特性研究 [J]. 振动与冲击, 2021, 40(20): 168-176.
Wang Zi, Zhu Caichao. Investigation on the nonlinear characteristics of high-speed rolling element bearing-rotor systems [J]. Journal of Vibration and Shock, 2021, 40(20): 168-176.
[4] Canchi S V, Parker R G. Parametric instability of a circular ring subjected to moving springs [J]. Journal of Sound and Vibration, 2006, 293(1): 360-379.
[5] Canchi S V, Parker R G. Parametric instability of a rotating circular ring with moving, time-varying springs [C]// ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2007.
[6] Zhao Z, Wang S, Xiu J. Parametric vibration of an elastic structure with stationary and rotating rings subjected to traveling loads [J]. Journal of Sound and Vibration, 2015, 358: 334-355.
[7] Luo A C J, Mote C D. Nonlinear vibration of rotating thin disks [J]. ASME Journal of Vibration and Acoustics, 2000, 122(4): 376-383.
[8] 王文明, 郝逸, 范进朝等. 基于Floquét理论的深水隔水管参激振动稳定性分析 [J]. 天然气与石油, 2018, 36(6): 54-59.
Wang Wenming, Hao Yi, Fan Jinchao, et al. Analysis of the parametrically excited vibration stability of risers based on Floquét theory [J]. Natural Gas and Oil, 2018, 36(6): 54-59.
[9] Shen I Y, Mote C D. On the mechanisms of instability of a circular plate under a rotating spring-mass-dashpot system [J]. Journal of Sound and Vibration, 1991, 148(2): 307-318.
[10] Han Q, Chu F. Parametric instability of a rotor-bearing system with two breathing transverse cracks [J]. European Journal of Mechanics-A/Solids, 2012, 36: 180-190.
[11] 代其义, 秦朝烨, 褚福磊等. 不同边界条件下转动锥壳的参激失稳特性分析 [J]. 振动与冲击, 2020, 39(16): 1-6.
Dai, Qiyi, Qin Zhaoye, Chu Fulei, et al. Parametric instability analysis of rotating truncated conical shells with different boundary conditions [J]. Journal of Vibration and Shock, 2020, 39(16): 1-6.
[12] 王哲人, 王世宇, 张东升. 环状周期结构三维参激振动不稳定分析 [J]. 固体力学学报, 2019, 40(2): 147-156.
Wang Zheren, Wang Shiyu, Zhang Dongsheng. Instability analysis of three-dimensional parametric vibration of circular periodic structures [J]. Chinese Journal of Solid Mechanics, 2019, 40(2): 147-156.
[13] 黄迪山, 张月月. 参数振动自由响应的指数三角级数逼近 [J]. 应用力学学报, 2016, 33(6): 936-941.
Huang Dishan, Zhang Yueyue. Exponential trigonometric series approximation of free response of parametric vibration [J]. Journal of Applied Mechanics, 2016, 33(6): 936-941.
[14] 黄迪山, 刘成, 张波. 二自由度参数振动自由响应逼近 [J]. 振动与冲击, 2019, 38(13): 13-20.
Huang Dishan, Liu Cheng, Zhang Bo. Free response approximation of a 2-DOF parametric vibration system [J]. Journal of Vibration and Shock, 2019, 38(13): 13-20.
[15] 陈东亮. 旋转环状周期结构动态特性解析研究 [D]. 天津: 天津大学, 2012.
Chen Dongliang. Analytical investigation on dynamic characteristics of rotational-annular-periodic structures [D]. Tianjin: Tianjin University, 2012.
[16] 黄迪山. 参数振动与特殊三角级数逼近 [M]. 上海: 上海科学技术出版社, 2023.
Huang Dishan. Parametic vibration and special trigonometeic series approximation [M]. Shanghai: Shanghai Scientific and Technical Publishers, 2023.
[17] Hsu C S. On the parametric excitation of a dynamic system having multiple degrees of freedom [J]. Journal of Applied Mechanics, 1963, 30(3): 367-372.
[18] 徐进友, 刘建平, 王世宇等. 环状旋转周期结构模态摄动分析 [J]. 天津大学学报(自然科学与工程技术版), 2010, 43(11): 1015-1019.
Xu Jinyou, Liu Jianping, Wang Shiyu, et al. Modal perturbation analysis for annular rotationally periodic structures [J]. Journal of Tianjin University (Science and Technology), 2010, 43(11): 1015-1019.
[19] Friedmann P, Hammond C E, Woo T H. Efficient numerical treatment of periodic systems with application to stability problems [J]. International Journal for Numerical Methods in Engineering, 1977, 11: 1117–1136.
PDF(3514 KB)

Accesses

Citation

Detail

Sections
Recommended

/