Artificial intelligent control of torsional vibration with MR variable stiffness variable damping

LI Wenfeng1, GE Xinfeng1, XI Jun2, LI Pingyang3, LIU Le1, GAO Jianrong1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (23) : 270-279.

PDF(3539 KB)
PDF(3539 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (23) : 270-279.

Artificial intelligent control of torsional vibration with MR variable stiffness variable damping

  • LI Wenfeng1, GE Xinfeng1, XI Jun2, LI Pingyang3, LIU Le1, GAO Jianrong1
Author information +
History +

Abstract

Effectively reversing the stiffness control can improve the torsional vibration performance of the system by adjusting the inherent characteristics and resonance frequency of the system. Proper torsional damping adjustment can suppress the amplitude of torsional vibration by dissipating the energy of torsional vibration. For the different influence laws of torsional stiffness and torsional damping on the torsional vibration of transmission systems, a hybrid Taguchi genetic algorithm-based Human-Simulated Intelligent torsional vibration control strategy for magnetorheological (MR) transmission systems with variable stiffness and variable damping was proposed. Firstly, the dynamics model of MR variable stiffness and variable damping transmission system was established. A hybrid Taguchi genetic algorithm was adopted to dynamically seek for the optimal combination of torsional stiffness and torsional damping parameters for MR transmission system under various excitation frequency conditions, and then a human-simulated intelligent controller (HSIC) is designed. Finally, simulation analysis and experimental investigation were carried out. The results indicate that the hybrid Taguchi genetic algorithm-based HSIC with variable stiffness and variable damping can effectively suppress the torsional vibration and significantly improve the output characteristics of the MR transmission system. When the excitation frequency of the test is 3.5Hz, the proposed HSIC system reduces the peak angular displacement and angular velocity of the system by 44%, 48% and 14%, 18%  respectively compared to the passive transmission system and the improved skyhook control system. Furthermore, the control performance of the proposed human-simulated intelligent control algorithm is superior to that of the improved skyhook control algorithm.  

Key words

Magneto-rheological / variable stiffness and variable damping / hybrid Taguchi genetic algorithm / human simulated intelligent control

Cite this article

Download Citations
LI Wenfeng1, GE Xinfeng1, XI Jun2, LI Pingyang3, LIU Le1, GAO Jianrong1. Artificial intelligent control of torsional vibration with MR variable stiffness variable damping[J]. Journal of Vibration and Shock, 2024, 43(23): 270-279

References

[1] 李琳, 古智超, 张铁. 结合机器人柔体动力学和关节力矩反馈的振动控制[J].振动与冲击, 2022, 41(11): 235-244.
LI Lin, GU Zhichao, LI Tie. Vibration control of robot to combine flexible body dynamics and joint torque feedback [J]. Journal of Vibration and Shock, 2022, 41(11): 235-244.
[2] LI W F, DONG X M, XI J, DENG X, et al. Semi-active vibration control of a transmission system using a magneto-rheological variable stiffness and damping torsional vibration absorber [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(10/11):2679-2698.
[3] 高蕾, 刘志浩, 高钦和, 等. 多轴特种车辆传动系统机械摩擦阻力损失与传动效率研究综述 [J]. 振动与冲击, 2023, 42(18): 138-154.
    GAO Lei, LIU Zhihao, GAO Qinhe, et al. Review on the mechanical friction resistance loss and transmission efficiencyof a multi-axle special vehicle transmission system [J]. Journal of Vibration and Shock, 2023, 42(18): 138-154.
[4] 崔庭琼, 李以农, 张运涛, 等. 非对称传动系统主轴断裂机理分析与结构优化研究 [J]. 振动与冲击, 2022, 41(18): 104-112.
    CUI Tingqiong, LI Yinong, ZHANG Yuntao, et al. Fracture mechanism and structure optimization of the main shaft of anasymmetric transmission system [J]. Journal of Vibration and Shock, 2022, 41(18): 104-112.
[5] HE W, OUYANG Q, HU H S, et al. Semi-active control of crankshaft skyhook based on MR torsional damper [J]. Frontiers in Materials, 2022, 49: 933076.
[6] LI W F, DONG X M, YU J Q, et al. Vibration control of vehicle suspension with magneto-rheological variable damping and inertia [J]. Journal of Intelligent Material Systems and Structures, 2021, 32(13): 1484-1503.
[7] 曾泽璀, 张磊, 闫明, 等. 螺杆挤压-旋转式磁流变阻尼器力学特性研究[J]. 振动、测试与诊断, 2022, 42(5): 937-944.
ZENG Zerui, ZHANG Lei, YAN Ming, et al. Fluid-Solid-Thermal staggered iterative coupling analysis for static aerothermoelasticity of wing [J]. Journal of Vibration, Measurement & Diagnosis. 2022, 42(5):937-944. 
[8] 黄浩, 吴杰, 邓兵兵, 等. 多极圆盘式磁流变制动器的设计与优化[J]. 工程设计学报, 2023, 30(3): 297-305.
HUANG Hao, WU Jie, DENG Bingbing, et al. Design and optimization of multipole disc-type magnetorheological brake [J]. Chinese Journal of Engineering Design, 2023, 30(3): 297-305. 
[9] 王书友, 肖鹿, 陈飞, 等. 磁流变离合器非线性迟滞特性试验与建模[J]. 中南大学学报(自然科学版), 2022, 53(6): 2049-2059.
WANG Shuyou, XIAO Lu, CHEN Fei, et al. Experiment and modeling of nonlinear hysteresis property of MR clutch [J]. Journal of Central South University (Science and Technology). 2022, 53(6): 2049-2059.
[10] YU J Q, DONG X M, SU X, QI S. Development and characterization of a novel rotary magnetorheological fluid damper with variable damping and stiffness [J]. Mechanical Systems and Signal Processing, 2022, 165: 108320.
[11] 周云. 磁流变阻尼控制理论与技术 [M]. 北京:科学出版社, 2007.
ZHOU Yun. Magnetorheological damping control theory and technology [M]. Beijing: Science Press, 2007.
[12] 高翔, 牛军川, 贺磊, 等. 基于并联机构的多维隔振系统振动鲁棒最优半主动控制[J]. 上海交通大学学报, 2023: 1-13.
GAO Xiang, NIU Junchuan, HE Lei, et al. Vibration robust optimal semi-active control of the multi-dimensional vibration isolator based on parallel mechanism [J]. Journal of Shanghai Jiaotong University. 2023: 1-13. 
[13] 王成龙, 吴鲁杰, 葛兴福. 国内面向冲击工况的磁流变缓冲技术发展与展望[J]. 应用力学学报, 2023, 40(3): 481-503.
WANG Chenglong, WU Lujie, GE Xingfu. Development and prospect of domestic magnetorheological buffer technology for impact conditions [J]. Chinese Journal of Applied Mechanics. 2023, 40(3): 481-503.
[14] 戴小文, 宋建霖, 岳丽全. 仿人智能控制理论及应用研究进展[J].自动化学报, 2020, 41(x): 1-13.
DAI Xiaowen, SONG Jianlin, YUE Liquan. Research Development in Theory and Application of Human Simulated Intelligent Control [J]. Acta Automatica Sinica, 2020, 41(x): 1−13.
[15] DONG X M, LI Z S, YU M, LIAO C R, et al. Human simulated intelligent control and its application in magneto-rheological suspension [J]. Control Theory & Applications, 2010, 27(2): 249-256.
[16] DONG X M and XIONG G W. Vibration Attenuation of Magnetorheological Landing Gear System with Human Simulated Intelligent Control [J]. Mathematical Problems in Engineering, 2013, 2013: 1-13.
[17] DONG X M, LI W F, YU J Q, PAN C W, et al. Magneto-Rheological Variable Stiffness and Damping Torsional Vibration Control of Powertrain System [J]. Frontiers in Materials, 2020, 7: 1-18.
[18] LI W F, DONG X M, XI J, DENG X, et al. Semi-active vibration control of atransmission system using a  magneto-rheological variable stiffness and damping torsional vibration absorber [J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2021, 235(10/11): 2679-2698.
[19] CHOI S B, LEE S K, PARK Y P. A hysteresis model for the field-dependent damping force of a magnetorheological damper [J]. Journal of Sound and Vibration, 2001, 245(2): 375-383.
[20] KWOK N M, HA Q P, NGUYEN T H, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization [J]. Sensors & Actuators A Physical, 2006, 132(2): 441-451.
[21] 李祖枢, 涂亚庆. 仿人智能控制 [M]. 北京:国防工业出版社, 2003.
LI Zushu, TU Yaqing. Human-Simulated Intelligent Control [M]. Beijing: National Defense Industry Press.2003. 
[22] TSAI J T, LIU T K, CHOU J H. Hybrid Taguchi-genetic algorithm for global numerical optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(4): 365-377.
[23] 陈娟. Hilbert-Huang变换及其在信号处理中的应用[D]. 大连: 大连理工大学, 2006.
CHEN Juan. Hilbert-Huang transform and its application in signal processing [D]. Danglian: Dalian University of Technology. 2006. 
[24] 王鹏, 杨绍普, 刘永强, 等. 高速列车磁流变半主动悬挂控制策略研究[J]. 力学学报, 2023, 55(4): 1004-1018.
WANG Peng, YANG Shaopu, LIU Yongqiang, et al. Research on control strategy of magnetorheological semi-active suspension for high-speed train [J]. Chinese Journal of Theoretical and Applied Mechanics. 2023, 55(4): 1004-1018. 
[25] Ye S, Williams K A. Torsional vibration control with an MR fluid brake [J]. Proceedings of SPIE, 2005, 5760:283-292.
[26] Abouobaia E, Bhat R, Sedaghati R. Semi-Active Control of Torsional Vibrations Using a New Hybrid Torsional Damper[J]. European Journal of Pharmacology, 2013, 19(2):191–198.
PDF(3539 KB)

Accesses

Citation

Detail

Sections
Recommended

/