Application Progress of machine learning in acoustic metamaterials

ZHANG Benben, MIAO Linchang, ZHENG Haizhong, XIAO Peng

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (23) : 280-293.

PDF(4422 KB)
PDF(4422 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (23) : 280-293.

Application Progress of machine learning in acoustic metamaterials

  • ZHANG Benben, MIAO Linchang, ZHENG Haizhong, XIAO Peng
Author information +
History +

Abstract

Acoustic metamaterials, as a new category of artificial composite structural materials, possess many innovative and anomalous physical properties that are not available in natural materials, which provide a brand-new research pathway and application opportunity for the effective control and precise regulation of acoustic waves. However, in order to obtain the specific structure-function response of acoustic metamaterials, the traditional design methods need to continuously and repeatedly adjust the material parameters or structural morphology during theoretical derivation, numerical simulation, and experimental validation, which substantially increases the research computational cost. Machine learning, with powerful nonlinear fitting capabilities, can bypass the physical modelling process through optimization algorithms and directly construct appropriate mapping relationships in the parameter space to meet the target function, providing the possibility of breaking through the high limitations of traditional physical design strategies. This paper reviews advances in the application of machine learning to acoustic metamaterials over the last few years. Firstly, the basic development of acoustic metamaterials and the fundamentals of mainstream machine learning algorithms are briefly outlined, and then the latest research results on the application of machine learning in phononic crystals, acoustic metamaterials, and acoustic metamaterials topology design are presented in detail, and finally, the current research status in the field is discussed and outlooked accordingly.

Cite this article

Download Citations
ZHANG Benben, MIAO Linchang, ZHENG Haizhong, XIAO Peng. Application Progress of machine learning in acoustic metamaterials[J]. Journal of Vibration and Shock, 2024, 43(23): 280-293

References

[1] Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[2] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[3] Prince S J D. Computer vision: models, learning, and inference[M]. Cambridge University Press, 2012.
[4] Nassif A B, Shahin I, Attili I, et al. Speech recognition using deep neural networks: A systematic review[J]. IEEE Access, 2019, 7: 19143-19165.
[5] Nickel M, Murphy K, Tresp V, et al. A review of relational machine learning for knowledge graphs[J]. Proceedings of the IEEE, 2015, 104(1): 11-33.
[6] Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nature Machine Intelligence, 2019, 1(5): 206-215.
[7] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[8] Meuwly M. Machine learning for chemical reactions[J]. Chemical Reviews, 2021, 121(16): 10218-10239.
[9] Karniadakis G E, Kevrekidis I G, Lu L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440.
[10] Chen R J, Lu M Y, Chen T Y, et al. Synthetic data in machine learning for medicine and healthcare[J]. Nature Biomedical Engineering, 2021, 5(6): 493-497.
[11] Wahab O A, Mourad A, Otrok H, et al. Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1342-1397.
[12] Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022.
[13] Lu M H, Feng L, Chen Y F. Phononic crystals and acoustic metamaterials[J]. Materials Today, 2009, 12(12): 34-42.
[14] Muhammad, Lim C W. From photonic crystals to seismic metamaterials: A review via phononic crystals and acoustic metamaterials[J]. Archives of Computational Methods in Engineering, 2022, 29(2): 1137-1198.
[15] Hussein M I, Leamy M J, Ruzzene M. Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook[J]. Applied Mechanics Reviews, 2014, 66(4): 040802.
[16] Cummer S A, Christensen J, Alù A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3): 1-13.
[17] 赵振成, 张涵柯, 郑玲. 一种局域共振型声学超材料的半解析建模与带隙机制研究[J]. 振动与冲击, 2024, 43(03): 27-36+45.
ZHAO Zhencheng, ZHANG Hanke, ZHENG Ling. Semi-analytical modeling and bandgap mechanism of a local resonance type acoustic metamaterial[J]. Journal of Vibration and Shock, 2024, 43(3): 27-36.
[18] Oudich M, Gerard N J R K, Deng Y, et al. Tailoring Structure‐Borne Sound through Bandgap Engineering in Phononic Crystals and Metamaterials: A Comprehensive Review[J]. Advanced Functional Materials, 2023, 33(2): 2206309.
[19] Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
[20] Fang N, Xi D, Xu J, et al. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006, 5(6): 452-456.
[21] Yang Z, Mei J, Yang M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301.
[22] Kaina N, Lemoult F, Fink M, et al. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials[J]. Nature, 2015, 525(7567): 77-81.
[23] Wu Y, Lai Y, Zhang Z Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density[J]. Physical Review Letters, 2011, 107(10): 105506.
[24] Man X, Luo Z, Liu J, et al. Hilbert fractal acoustic metamaterials with negative mass density and bulk modulus on subwavelength scale[J]. Materials & design, 2019, 180: 107911.
[25] Cummer S A, Christensen J, Alù A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3): 1-13.
[26] Zaremanesh M, Bahrami A. Multilayer acoustic invisibility cloak based on composite lattice[J]. Scientific Reports, 2022, 12(1): 16096.
[27] Zhu J, Christensen J, Jung J, et al. A holey-structured metamaterial for acoustic deep-subwavelength imaging[J]. Nature Physics, 2011, 7(1): 52-55.
[28] Ji G, Huber J. Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials-A review[J]. Applied Materials Today, 2022, 26: 101260.
[29] Zhai S L, Zhao X P, Liu S, et al. Inverse doppler effects in broadband acoustic metamaterials[J]. Scientific Reports, 2016, 6(1): 32388.
[30] Lu Q, Li X, Zhang X, et al. Perspective: Acoustic metamaterials in future engineering[J]. Engineering, 2022, 17: 22-30.
[31] 牛嘉敏, 吴九汇. 非对称类声学超材料的低频宽带吸声特性[J]. 振动与冲击, 2018, 37(19): 45-49+68.
NIU Jiamin, WU Jiuhui. Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials[J]. Journal of Vibration and Shock, 2018, 37(19): 45-49.
[32] Assouar B, Liang B, Wu Y, et al. Acoustic metasurfaces[J]. Nature Reviews Materials, 2018, 3(12): 460-472.
[33] 李澔翔, 梁彬, 程建春. 声人工结构的声场调控研究进展[J].中国科学: 物理学 力学 天文学, 2022, 52(04): 6-33.
LI Haoxiang,LIANG Bi,;CHENG Jianchun.Recent advances in the artificial structure-based manipulation of the acoustic field[J].Scientia Sinica Physica,Mechanica & Astronomica, 2022, 52(4): 6-33.
[34] Liang B, Cheng J, Qiu C W. Wavefront manipulation by acoustic metasurfaces: from physics and applications[J]. Nanophotonics, 2018, 7(6): 1191-1205.
[35] Tian Y, Wei Q, Cheng Y, et al. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude[J]. Applied Physics Letters, 2017, 110(19).
[36] Chen A L, Wang Y S, Wang Y F, et al. Design of acoustic/elastic phase gradient metasurfaces: principles, functional elements, tunability, and coding[J]. Applied Mechanics Reviews, 2022, 74(2): 020801.
[37] 顾仲明, 郭佳敏, 祝捷. 非厄米拓扑声学中新奇物态的研究进展[J]. 科学通报, 2023, 68(26): 3428-3436.
GU Zhongming, GUO Jiamin, ZHU Jie. Progress on the novel states in non-Hermitian topological acoustics[J].Science China Press, 2023, 68(26): 3428-3436.
[38] Xue H, Yang Y, Zhang B. Topological acoustics[J]. Nature Reviews Materials, 2022, 7(12): 974-990.
[39] Zhang X, Zangeneh-Nejad F, Chen Z G, et al. A second wave of topological phenomena in photonics and acoustics[J]. Nature, 2023, 618(7966): 687-697.
[40] Huang L, Huang S, Shen C, et al. Acoustic resonances in non-Hermitian open systems[J]. Nature Reviews Physics, 2023: 1-17.
[41] Kapoor A, Gulli A, Pal S, et al. Deep Learning with TensorFlow and Keras: Build and deploy supervised, unsupervised, deep, and reinforcement learning models[M]. Packt Publishing Ltd, 2022.
[42] Attali J G, Pagès G. Approximations of functions by a multilayer perceptron: a new approach[J]. Neural Networks, 1997, 10(6): 1069-1081.
[43] Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 2020, 577(7792): 641-646.
[44] Ilnicka A, Schneider G. Designing molecules with autoencoder networks[J]. Nature Computational Science, 2023, 3(11): 922-933.
[45] Xu X, Sun C, Li Y, et al. An improved tandem neural network for the inverse design of nanophotonics devices[J]. Optics Communications, 2021, 481: 126513.
[46] Creswell A, White T, Dumoulin V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
[47] Gebauer N W A, Gastegger M, Hessmann S S P, et al. Inverse design of 3d molecular structures with conditional generative neural networks[J]. Nature Communications, 2022, 13(1): 973.
[48] Frank M J, Seeberger L C, O'reilly R C. By carrot or by stick: cognitive reinforcement learning in parkinsonism[J]. Science, 2004, 306(5703): 1940-1943.
[49] Watkins C J C H, Dayan P. Q-learning[J]. Machine Learning, 1992, 8: 279-292.
[50] Sutton R S. Generalization in reinforcement learning: Successful examples using sparse coarse coding[J]. Advances in Neural Information Processing Systems, 1995, 8.
[51] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[52] Deng W, Zhang X, Zhou Y, et al. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems[J]. Information Sciences, 2022, 585: 441-453.
[53] Magri L. Adjoint methods as design tools in thermoacoustics[J]. Applied Mechanics Reviews, 2019, 71(2): 020801.
[54] Han X K, Zhang Z. Topological optimization of phononic crystal thin plate by a genetic algorithm[J]. Scientific Reports, 2019, 9(1): 8331.
[55] Fuster-Garcia E, Romero-Garcia V, Pérez J V S, et al. A phenomenological model for sonic crystals based on artificial neural networks[J]. The Journal of the Acoustical Society of America, 2006, 120(2): 636-641.
[56] Sadat S M, Wang R Y. A machine learning based approach for phononic crystal property discovery[J]. Journal of Applied Physics, 2020, 128(2).
[57] Oniz D, Mo Y L, Nakshatrala K B. Shapley values and machine learning to characterize metamaterials for seismic applications[J]. Numerical Analysis,2021.
[58] Javadi S, Maghami A, Hosseini S M. A deep learning approach based on a data-driven tool for classification and prediction of thermoelastic wave’s band structures for phononic crystals[J]. Mechanics of Advanced Materials and Structures, 2022, 29(27): 6612-6625.
[59] Demeke W, Jung J, Song H, et al. Design of Aluminum Plate Phononic Crystals with Wide Bandgaps via Free-form shape Optimization Using Deep Neural Networks[J]. Extreme Mechanics Letters, 2023: 102098.
[60] Liu C X, Yu G L. Predicting the dispersion relations of one-dimensional phononic crystals by neural networks[J]. Scientific Reports, 2019, 9(1): 15322.
[61] Liu C X, Yu G L, Zhao G Y. Neural networks for inverse design of phononic crystals[J]. AIP Advances, 2019, 9(8).
[62] Luo Y T, Li P Q, Li D T, et al. Probability-density-based deep learning paradigm for the fuzzy design of functional metastructures[J]. Research, 2020.
[63] Miao X B, Dong H W, Wang Y S. Deep learning of dispersion engineering in two-dimensional phononic crystals[J]. Engineering Optimization, 2023, 55(1): 125-139.
[64] Dong J, Qin Q H, Xiao Y. Nelder–Mead optimization of elastic metamaterials via machine-learning-aided surrogate modeling[J]. International Journal of Applied Mechanics, 2020, 12(01): 2050011.
[65] Geng Q, Fong P K, Ning J, et al. Thermally-induced transitions of multi-frequency defect wave localization and energy harvesting of phononic crystal plate[J]. International Journal of Mechanical Sciences, 2022, 222: 107253.
[66] Jo S H, Yoon H, Shin Y C, et al. Elastic wave localization and harvesting using double defect modes of a phononic crystal[J]. Journal of Applied Physics, 2020, 127(16).
[67] Lee D, Youn B D, Jo S H. Deep-learning-based framework for inverse design of a defective phononic crystal for narrowband filtering[J]. International Journal of Mechanical Sciences, 2023, 255: 108474.
[68] Wang Y F, Wang Y Z, Wu B, et al. Tunable and active phononic crystals and metamaterials[J]. Applied Mechanics Reviews, 2020, 72(4): 040801.
[69] Huang K, Li Y, Lai Y, et al. Neural Network-based Inverse Design of Nonlinear Phononic Crystals[J]. IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, 2023.
[70] Hyun J, Kim M, Choi W. Partitioned gradient-index phononic crystals for full phase control[J]. Scientific Reports, 2020, 10(1): 14630.
[71] Lee S, Choi W, Park J W, et al. Machine learning-enabled development of high performance gradient-index phononic crystals for energy focusing and harvesting[J]. Nano Energy, 2022, 103: 107846.
[72] Guo L, Zhao S, Yang J, et al. Graphene-based phononic crystal lenses: machine learning-assisted analysis and design[J]. Ultrasonics, 2023: 107220.
[73] Luo C, Ning S, Liu Z, et al. Interactive inverse design of layered phononic crystals based on reinforcement learning[J]. Extreme Mechanics Letters, 2020, 36: 100651.
[74] Wu R T, Liu T W, Jahanshahi M R, et al. Design of one-dimensional acoustic metamaterials using machine learning and cell concatenation[J]. Structural and Multidisciplinary Optimization, 2021, 63: 2399-2423.
[75] He L, Guo H, Jin Y, et al. Machine-learning-driven on-demand design of phononic beams[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(1): 214612.
[76] Maghami A, Hosseini S M. Automated design of phononic crystals under thermoelastic wave propagation through deep reinforcement learning[J]. Engineering Structures, 2022, 263: 114385.
[77] Shah T, Zhuo L, Lai P, et al. Reinforcement learning applied to metamaterial design[J]. The Journal of the Acoustical Society of America, 2021, 150(1): 321-338.
[78] Ciaburro G, Iannace G. Modeling acoustic metamaterials based on reused buttons using data fitting with neural network[J]. The Journal of the Acoustical Society of America, 2021, 150(1): 51-63.
[79] Gurbuz C, Kronowetter F, Dietz C, et al. Generative adversarial networks for the design of acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2021, 149(2): 1162-1174.
[80] Zheng B, Yang J, Liang B, et al. Inverse design of acoustic metamaterials based on machine learning using a Gauss–Bayesian model[J]. Journal of Applied Physics, 2020, 128(13).
[81] Bückmann T, Thiel M, Kadic M, et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J]. Nature Communications, 2014, 5(1): 4130.
[82] Cao J, Qi F, Yan S. The required acoustic parameters simplification of invisibility cloaks and concentrators using the impedance-tunable coordinate transformation[J]. Scientific Reports, 2021, 11(1): 920.
[83] Ahmed W W, Farhat M, Zhang X, et al. Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak[J]. Physical Review Research, 2021, 3(1): 013142.
[84] Wang L, Boddapati J, Liu K, et al. Mechanical cloak via data-driven aperiodic metamaterial design[J]. Proceedings of the National Academy of Sciences, 2022, 119(13): e2122185119.
[85] Liu C, Ma Q, Luo Z J, et al. A programmable diffractive deep neural network based on a digital-coding metasurface array[J]. Nature Electronics, 2022, 5(2): 113-122.
[86] Donda K, Zhu Y, Merkel A, et al. Ultrathin acoustic absorbing metasurface based on deep learning approach[J]. Smart Materials and Structures, 2021, 30(8): 085003.
[87] Sajedian I, Lee H, Rho J. Double-deep Q-learning to increase the efficiency of metasurface holograms[J]. Scientific Reports, 2019, 9(1): 10899.
[88] Zhao T, Li Y, Zuo L, et al. Machine-learning optimized method for regional control of sound fields[J]. Extreme Mechanics Letters, 2021, 45: 101297.
[89] Li X, Ning S, Liu Z, et al. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112737.
[90] Liu C X, Yu G L. Inverse design of locally resonant metabarrier by deep learning with a rule-based topology dataset[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114925.
[91] Liu C X, Yu G L, Liu Z. Fast topology optimization of phononic crystal‐based metastructures for vibration isolation by deep learning[J]. Computer‐Aided Civil and Infrastructure Engineering, 2023.
[92] Jiang W, Zhu Y, Yin G, et al. Dispersion relation prediction and structure inverse design of elastic metamaterials via deep learning[J]. Materials Today Physics, 2022, 22: 100616.
[93] Han S, Han Q, Li C. Deep-learning-based inverse design of phononic crystals for anticipated wave attenuation[J]. Journal of Applied Physics, 2022, 132(15).
[94] Han S, Han Q, Jiang T, et al. Inverse design of phononic crystals for anticipated wave propagation by integrating deep learning and semi-analytical approach[J]. Acta Mechanica, 2023, 234(10): 4879-4897.
[95] Kudela P, Ijjeh A, Radzienski M, et al. Deep learning aided topology optimization of phononic crystals[J]. Mechanical Systems and Signal Processing, 2023, 200: 110636.
[96] Chen Y, Lan Z, Su Z, et al. Inverse design of photonic and phononic topological insulators: a review[J]. Nanophotonics, 2022, 11(19): 4347-4362.
[97] Peng Y G, Qin C Z, Zhao D G, et al. Experimental demonstration of anomalous Floquet topological insulator for sound[J]. Nature Communications, 2016, 7(1): 13368.
[98] Yang Z, Gao F, Shi X, et al. Topological acoustics[J]. Physical Review Letters, 2015, 114(11): 114301.
[99] Zheng S, Man X, Kong Z L, et al. Observation of fractal higher-order topological states in acoustic metamaterials[J]. Science Bulletin, 2022, 67(20): 2069-2075.
[100] He L, Wen Z, Jin Y, et al. Inverse design of topological metaplates for flexural waves with machine learning[J]. Materials & Design, 2021, 199: 109390.
PDF(4422 KB)

220

Accesses

0

Citation

Detail

Sections
Recommended

/