Dynamic characteristics of controllable universal hinged flexible pipe in bend

LIN Zhiqiang1,LUO Min1,WANG Jing2,XU Tingting1,LI Qiaozhen1

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (5) : 173-181.

PDF(2385 KB)
PDF(2385 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (5) : 173-181.

Dynamic characteristics of controllable universal hinged flexible pipe in bend

  • LIN Zhiqiang1,LUO Min1,WANG Jing2,XU Tingting1,LI Qiaozhen1
Author information +
History +

Abstract

In this paper, for the stochastic dynamic contact problem of controllable universal joint flexible pipes in elbow pipe, the elbow pipe and the controllable universal joint flexible pipes are used as research objects. Hamiltonian principle combined with multi-body system dynamics theory is adopted to introduce rigid body motion coordinate system to describe the motion constraints of controllable joint, and pipe-pipe contact model is used to describe the dynamic contact of controllable universal joint pipe and elbow pipe. Established the syphon controlled universal joint flexible pipes numerical calculation methods of contact nonlinear multi-body system dynamics. Taking the flexible drill pipe in the deviation section of ultra-short radius horizontal well as an example, the vibration characteristics of the flexible drill pipe were evaluated according to the dynamic characteristics standard of Baker Hughes, and the effects of different rotational speed and bit weight on the dynamic characteristics of the flexible drill pipe were studied. The results indicate that the transverse vibration is the main factor leading to the possible failure of the flexible drill pipe. The transverse vibration of flexible pipe decreases with the increase of rotational speed, with the increase of weight on bit.

Key words

Flexible pipe / Hamilton principle / Dynamics of multibody systems / Controllable universal joint / Moving contacts

Cite this article

Download Citations
LIN Zhiqiang1,LUO Min1,WANG Jing2,XU Tingting1,LI Qiaozhen1. Dynamic characteristics of controllable universal hinged flexible pipe in bend[J]. Journal of Vibration and Shock, 2024, 43(5): 173-181

References

[1] 王坤东,颜国正. 仿蚯蚓蠕动微机器人牵引与运动控制[J].机器人,2006,(1): 19-24. WANG Kun-dong, YAN Guo-zheng. Locomotion and Its Control of Earthworm-like Micro Robot[J]. Robot, 2006, (1): 19-24 [2] 乔晋崴,尚建忠,陈 循,等. 小口径管内机器人技术的研究进展[J]. 中国机械工程,2010,21(10): 1254-1259. QIAO Jin-wei, SHANG Jian-zhong, CHEN Xun, et al. Research and Development of Small In-pipe Robots[J], China Mechanical Engineering, 2010, 21(10): 1254-1259. [3] 谢同雨,李 清,丁煜文,等. 多模块蛇形管道打磨机器人的设计与分析[J]. 机器人,2020,42(6): 672-685. XIE Tong-yu, LI Qing-yu, DING Yu-wen, et al. Design and Analysis of a Multi-Module Snake Shaped Pipeline Grinding Robot[J]. Robot, 2020, 42(6): 672-685. [4] 郭永宾,管 申,刘智勤,等. 多分支超短半径钻井技术在我国海上油田的首次应用[J]. 中国海上油气,2020,32(5): 137-144. GUO Yong-bin, GUAN Shen, LIU Zhi-xun, et al. First application of multi-lateral ultra-short radius drilling in China offshore oilfields[J]. China Offshore Oil and Gas, 2020, 32(5): 137-144. [5] 黄葆华,杨建刚,高 伟,等. 求解非线性链式结构瞬态响应的传递矩阵方法[J]. 振动工程学报,1999,(1): 49-56. HUANG Bao-hua, YANG Jian-gang, GAO Wei, et al.Transfer Matrix Method for Transient Response of Nonlinear Chainlike System[J]. Journal of Vibration Engineering, 1999,(1): 49-56 [6] 赵 强,吴洪涛,朱剑英. 多体系统结构动力学建模[J]. 南京航空航天大学学报,2006,(4): 442-446. ZHAO Qiang, WU Hong-tao, ZHU Jian-ying. Structural Dynamics Modeling of Multibody System[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, (4): 442-446. [7] 徐 妍,张文明,冯雅丽. 多段铰接式扬矿硬管系统建模与动力学分析[J]. 中南大学学报(自然科学版),2008,(3): 560-565. XU Yan, ZHANG Wen-ming, FENG Ya-li. Modeling and dynamics analysis of multiple articulated lifting system[J]. Journal of Central South University(Science and Technology), 2008, (3): 560-565 [8] 谭小慧,樊亚春,王学松,等. 非光滑链式多体系统的接触动力学建模与仿真[J]. 系统仿真学报,2012,24(9): 1757-1761. TAN Xiao-hui, FAN Ya-chun, WANG Xue-song, et al. Model and Simulation of Non-smooth Chained Multi-body Dynamics[J]. JOURNAL OF SYSTEM SIMULATION, 2012, 24(9): 1757-1761 [9] 张 军,贺方倩. 移动车辆作用下铰接梁式浮桥的动力响应[J].振动与冲击,2022,41(2): 193-199. ZHANG Jun, HE Qian. Dynamic responses of a hinged-girder floating bridge subjected to the action of moving vehicles[J]. Journal of Vibration and Shock, 2022, 41(2): 193-199. [10] 罗敏,徐亭亭,王晶,等. 管内可控万向铰接柔性杆接触非线性有限元分析[J]. 中国石油大学学报(自然科学版),2019,43(4): 75-81. LUO Min, XU Ting-ting, WANG Jing, et al. Contact nonlinear finite element analysis of controllable universal joint flexible slender in tube[J]. Journal of China University of Petroleum (Edition of Natural science), 2019, 43(4): 75-81. [11] 徐亭亭,罗 敏,姚利明,等. 基于动力松弛法的含铰柔性钻杆载荷传递机理[J]. 石油学报,2022,43(5): 680-693. XU Ting-ting, LUO Min, YAO Li-ming, et al. Load transfer mechanism of flexible drill rod with hinges based on dynamic relaxation method[J]. ACTA PETROLEI SINICA, 2022, 43(5): 680-693. [12] J. W. Kamman, R. L. Huston. Dynamics of Constrained Multibody Systems[J]. Journal of Applied Mechanics. 1984, 51(4): 899-903. [13] Jiegao Wang, Clément M. Gosselin, Li Cheng. Modeling and Simulation of Robotic Systems with Closed Kinematic Chains Using the Virtual Spring Approach[J]. Multibody system dynamics. 2002, 7(2): 145-170. [14] Omar, Mohamed A. Chain Drive Simulation Using Spatial Multibody Dynamics[J]. Advances in Mechanical Engineering. 2014, 2014(4): 1-15. [15] Shafei, A.M., Shafei, H.R. . A systematic method for the hybrid dynamic modeling of open kinematic chains confined in a closed environment[J]. Multibody System Dynamics. 2016, 38(1): 21-42. [16] Lourenço, Igor Mancilla, Orsino, Renato Maia Matarazzo, Franzini, G. R. . Dynamics of an articulated chain of rigid pipes discharging fluid under concomitant support excitation: A numerical analysis[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020, 42(11): 1-15. [17] A. BAZOUNE, Y. A. KHULIEF, N. G. STEPHEN. SHAPE FUNCTIONS OF THREE-DIMENSIONAL TIMOSHENKO BEAM ELEMENT[J]. Journal of Sound and Vibration. 2003, 259(2): 473-480. [18] 王宝金. 水平管内轴向受压柔性旋转梁动力学行为研究[D]. 大庆:东北石油大学,2018. WANG Bao-jin. Study on the Dynamic Mechanical Behavior of Flexible Rotating Beam Under Axial Compression Constrained in A Horizontal Pipe[D]. Daqing: Northeast Petroleum University, 2018. [19] T.G. Ritto, C. Soize, R. Sampaio.Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[J]. International Journal of Non-Linear Mechanics. 2009, 44(8): 865. [20] 张 雄,王天舒,刘 岩. 计算动力学(第二版)[M].北京:清华大学出版社,2015. ZHANG Xiong, WANG Tian-shu, LIU Yan. Computational Dynamics(Second edition)[M]. Beijing: Tsinghua University Press, 2015. [21] 敬 谦,刘宏昭,王庚祥. 机构系统关节约束反力分析[J]. 振动与冲击,2019,38(8): 161-165. JING Qian, LIU Hong-zhao, WANG Geng-xiang. Analysis of the constraint reaction force in a mechanism system[J]. Journal of Vibration and Shock, 2019, 38(8): 161-165. [22] 张雷克,范宇宏,张金剑,等. 水轮发电机组横/轴有限元振动分析[J].振动与冲击,2022,41(14): 64-69+98. ZHANG Ke-lei, FAN Yu-hong, ZHANG Jin-jian, et al. Finite element analysis on the transversal/axial vibration of a hydraulic generating set[J]. Journal of Vibration and Shock, 2022, 41(14): 64-69+98. [23] 徐亭亭. 弯管内柔性梁的结构与载荷传递机理研究[D]. 大庆:东北石油大学,2019. XU Ting-ting. Research on structure and load transfer mechanism of flexible beam in curved pipe[D]. Daqing: Northeast Petroleum University, 2019. [24] 管 申,郭 浩,程 林,等. WZ-X1井超短半径水平井轨迹控制技术研究及应用[J]. 钻采工艺,2020,43(6): 21-23+27+7. GUAN Shen, GUO Hao, CHENG Lin, et al. RESEARCH AND APPLICATION OF TRAJECTORY CONTROL TECHNOLOGY FOR ULTRA-SHORT RADIUS HORIZONTAL DRILLING IN WELL WZ-X1[J]. Drilling & Production Technology,2020,43(6): 21-23+27+7. [25] 况雨春,蒋海军,雷宇航,等. 钻柱系统工作行为三维数值模拟方法[J].石油机械,2011,39(11): 7-9+87. KUANG Yuchun, JIANG Hai-jun, LEI Yu-hang, et al. The three-dimensional numerical method to simulate the operating behavior of the drill string system[J]. China Petroleum Machinery, 2011, 39(11): 7-9+87. [26] 胡以宝,狄勤丰,邹海洋,等. 钻柱动力学研究及监控技术新进展[J]. 石油钻探技术,2006,(6): 7-10. HU Yi-bao, DI Qin-feng, ZOU Hai-yang, et al. The New Developments of Monitoring Technology and Researches on Drill String Dynamics[J]. Petroleum Drilling Techniques, 2006, (6):7-10. [27] 祝效华,胡志强. 基于钻头破岩钻进的下部钻具横向振动特性研究[J].振动与冲击,2014,33(17): 90-93. ZHU Xiao-hua, HU Zhi-qiang. Lateral vibration characteristics analysis of a bottom hole assembly based on interaction between bit and rock[J]. Journal of Vibration and Shock, 2014, 33(17): 90-93.
PDF(2385 KB)

Accesses

Citation

Detail

Sections
Recommended

/