Modeling of the bourrelet-barrel contact problem and its application

MIAO Wei1,YIN Qiang1, QIAN Linfang1,2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (6) : 157-170.

PDF(4038 KB)
PDF(4038 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (6) : 157-170.

Modeling of the bourrelet-barrel contact problem and its application

  • MIAO Wei1,YIN Qiang1, QIAN Linfang1,2
Author information +
History +

Abstract

It is of great significance to study the contact phenomena between bourrelet and bore for understanding the in-bore motion of projectile. Hence, a bourrelet-barrel contact model is proposed. It is assumed that the contact stress between a bourrelet and a rifling land only varies longitudinally along the rifling. The surface of a rifling land is simplified as a spatial curve. The geometry of the bore is then described as a cage consisting of rifling lands. An algorithm is proposed for detecting the contact between the bourrelet and rifling lands. The contact stress is calculated with an analytical solution to a 2-D contact problem by spreading the projectile and barrel out in a circular direction. The Chebyshev-Gauss quadrature is adopted to calculate the contact load on the bourrelet and rifling lands because of the square-root singularity of the contact stress. The fitting method and identification method of determining the model parameters are presented. Theoretical analysis suggests that the contact stiffness between the bourrelet and bore varies with in-bore travel of the projectile. The influence of variance of the projectile mass-center on bourrelet-bore contact type and formation of wearing grooves on the bourrelet is analyzed through numerical simulations. It is found the equivalent contact point on the bourrelet does not locate at the bourrelet center or on the bourrelet edges.

Cite this article

Download Citations
MIAO Wei1,YIN Qiang1, QIAN Linfang1,2. Modeling of the bourrelet-barrel contact problem and its application[J]. Journal of Vibration and Shock, 2024, 43(6): 157-170

References

[1] 韩石磊, 洪嘉振. 柔性多体系统接触/碰撞动力学的若干关键问题[J]. 力学与实践, 2011, 33(02):1-7. HAN S L, HONG J Z. Several key issues in flexible multibody dynamics with contact/impact[J]. Mechanics in Engineering, 2011, 33(02):1-7. [2] FLORES P. Contact mechanics for dynamical systems: a comprehensive review[J]. Multibody System Dynamics, 2021:127-177. [3] 刘 雷, 陈运生, 杨国来. 基于接触模型的弹炮耦合问题研究[J]. 兵工学报, 2006, 27(06):984-987. LIU L, CHEN Y S, YANG G L. A study on the projectile-barrel coupling based on contact model[J]. Acta Armamentarii, 2006, 27(06):984-987. [4] 陈世业. 自行火炮弹炮多体发射系统动力学仿真研究[D]. 南京: 南京理工大学, 2013. CHEN S Y. Dynamics simulation for the projectile-barrel multi-body launching system of the self-propelled artillery[D]. Nanjing: Nanjing University of Science & Technology, 2013. [5] 罗中峰, 管小荣, 徐亚栋, 等. 某火炮弹丸在炮口状态的动态灵敏度分析[J]. 兵工学报, 2017, 38(12):2328-2336. LUO Z F, GUAN X R, XU Y D, et al. Analyses of parameter sensitivity for position and attitude of projectile at muzzle[J], Acta Armamentarii, 2017, 38(12):2328-2336. [6] 陈 宇. 坦克行进间发射动力学分析及优化研究[D]. 南京: 南京理工大学, 2019. CHEN Y. Dynamic analysis and optimization of tank firing on the move[D], Nanjing: Nanjing University of Science & Technology, 2019. [7] CHEN Y, YANG G L, ZHOU H G, et al. Influence of Projectile-Barrel Coupling on Gun Vibration of the Moving Tank Under the Influence of a Stabilizer[J]. Arabian Journal for Science and Engineering, 2021, 46:7635-7648. [8] 陈 宇, 杨国来, 刘金峰, 等. 多源激励下坦克行进间火炮身管动态弯曲问题研究[J]. 振动与冲击, 2022, 41(19):16-21. CHEN Y, YANG G L, LIU J F, et al. Dynamic bending of gun barrel during tank moving under multi-source excitation[J]. Journal of Vibration and Shock, 2022, 41(19):16-21. [9] 陈 宇, 杨国来, 孙权兆, 等. 计及身管柔性步长的高速机动坦克炮口振动仿真与控制研究[J]. 振动与冲击, 2022.41(11):50-54. CHEN Y, YANG G L, SUN Q Z, et al. Simulation and control for muzzle vibration of high-speed mobile tank considering barrel flexibility compensation[J]. Journal of Vibration and Shock, 2022, 41(11):50-54. [10] 罗中峰, 管小荣, 徐 诚. 面向弹丸炮口状态的自行火炮结构参数全局灵敏度[J]. 兵工学报, 2021, 42(02):254-267. LUO Z F, GUAN X R, XU C. Global sensitivity analysis of a self-propelled gun’s structural parameters for position and attitude of projectile at muzzle[J]. Acta Armamentarii, 2021, 42(02):254-267. [11] 陈成军, 陈小伟, 柳 明. 接触-碰撞算法研究进展[J]. 计算力学学报, 2018, 35(03):261-274. CHEN C J, CHEN X W, LIU M. Review of research progress in contact-impact algorithms[J]. Chinese Journal of Computational Mechanics, 2018, 35(03):261-274. [12] 芮筱亭, 张延教. 对弹丸膛内运动状态及其处理方法的讨论[J]. 弹道学报, 1990(03):24-30. RUI X T, ZHANG Y J. Study on motion states and handling methods for projectile motion in the bore[J]. Journal of Ballistics, 1990(03):24-30. [13] 陈光宋. 弹炮耦合系统动力学及关键参数识别研究[D]. 南京: 南京理工大学, 2016. CHEN G S. The study on the dynamic of the projectile-barrel coupled system and the corresponding key parameters[D]. Nanjing: Nanjing University of Science & Technology, 2016. [14] 黄维璇, 苏祺, 李四平. 刚体碰撞的分析力学方法[J]. 振动与冲击, 2023, 42(15):42-47. HUANG W X, SU Q, LI S P. Mothod of analytical mechanics for rigid body collision[J]. Journal of Vibration and Shock, 2023, 42(15):42-47. [15] 许强, 叶继红. 基于杆系离散元法的结构接触碰撞行为分析[J]. 振动与冲击, 2023, 42(13):103-110. XU Q, YE J H. Structural contact-collision behavior analysis based on bar system discrete element method[J]. Journal of Vibration and Shock, 2023, 42(13):103-110. [16] 康新中, 马春茂, 魏孝达. 火炮系统建模理论[M]. 北京: 国防工业出版社, 2003. KANG X Z, MA C M, WEI X D. Modeling Theory of Gun System[M]. Beijing: National Defense Industry Press, 2003. [17] 刘 宁, 杨国来. 弹管横向碰撞对身管动力响应的影响[J]. 弹道学报, 2010, 22(02):67-70. LIU N, YANG G L. Effect of lateral impact between projectile and barrel on dynamic response of tube[J]. Journal of Ballistics, 2010, 22(02):67-70. [18] DURSUN T. Effects of projectile and gun parameters on the dispersion[J]. Defence Science Journal, 2020, 70(2). [19] 丁树奎, 王良明, 杨志伟, 等. 远程火炮弹丸起始扰动的动力学特性[J]. 兵工学报, 2021, 42(04):673-683. DING S K, WANG L M, YANG Z W, et al. Dynamic property of the initial disturbance of projectile for the long-range artillery howitzer[J]. Acta Armamentarii, 2021, 42(04):673-683. [20] MACHADO M, MOREIRA P, FLORES P, et al. Compliant contact force models in multibody dynamics: Evolution of the hertz contact theory[J]. Mechanism and machine theory, 2012, 53:99-121. [21] 王庚祥, 刘宏昭. 多体系统动力学中关节效应模型的研究进展[J]. 力学学报, 2015, 47(01):31-50. WANG G X, LIU H Z. Research progress of joint effects model in multibody system dynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(01):31-50. [22] SKRINJAR L, SLAVIČ J, BOLTEŽAR M. A review of continuous contact-force models in multibody dynamics[J]. International Journal of Mechanical Sciences, 2018, 145:171-187. [23] ZHANG J, LI W, ZHAO L, et al. A continuous contact force model for impact analysis in multibody dynamics[J]. Mechanism and Machine Theory, 2020, 153:103946. [24] 马 佳. 中大口径身管内膛与弹丸前定心部接触碰撞问题研究[D]. 南京: 南京理工大学, 2019. MA J. Research on contact-impact events between barrel and bourrelet of medium-large caliber howitzer[D]. Nanjing: Nanjing University of Science & Technology, 2019. [25] 马 佳, 陈光宋, 吉磊, 等. 身管内膛与弹丸前定心部接触碰撞响应分析[J]. 弹道学报, 2019, 31(04):74-81. MA J, CHEN G S, JI L, et al. Analysis on contact/impact response between barrel and bourrelet[J]. Journal of Ballistics, 2019, 31(04):74-81. [26] MA J, CHEN G, JI L, et al. A general methodology to establish the contact force model for complex contacting surfaces[J]. Mechanical Systems and Signal Processing, 2020, 140:106678. [27] JOHNSON K L. Contact Mechanics[M]. Cambridge: Cambridge University Press, 1987. [28] HIPPMANN G. An algorithm for compliant contact between complexly shaped bodies[J]. Multibody System Dynamics, 2004, 12(4):345-362. [29] WANG X M, KE L L, WANG Y S. The dynamic contact of a viscoelastic coated half-plane under a rigid flat punch[J]. Mechanics Based Design of Structures and Machines, 2021, 1-16. [30] BALCI M N, DAG S. Moving contact problems involving a rigid punch and a functionally graded coating[J]. Applied Mathematical Modelling, 2020, 81:855-886. [31] ÇÖMEZ. Frictional moving contact problem between a functionally graded monoclinic layer and a rigid punch of an arbitrary profile[J]. Acta Mechanica, 2022, 233(4):1435-1453. [32] TIAN X, ZHOU Y, WANG L, et al. Surface contact behavior of functionally graded thermoelectric materials indented by a conducting punch[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5):649-664. [33] BORODACHEV N, GALIN L. Contact problem for a stamp with narrow rectangular base[J]. Journal of Applied Mathematics and Mechanics, 1974, 38(1):108-113. [34] SIVASHINSKY G. The problem of a slender die[J]. Journal of Elasticity, 1975, 5(2):161-166. [35] 董富祥, 洪嘉振. 多体系统动力学碰撞问题研究综述[J]. 力学进展, 2009, 39(03):352-359. DONG F X, HONG J Z. Review of impact problem for dynamics of multibody system[J]. Advances in Mechanics, 2009, 39(03):352-359. [36] SHABANA A A. Dynamics of multibody systems (fourth edition)[M]. Cambridge: Cambridge University Press, 2013. [37] 芮筱亭. 多体系统发射动力学[M]. 北京: 国防工业出版社, 1995. RUI X T. Launch Dynamics of Multibody Systems[M]. Beijing: National Defense Industry Press, 1995. [38] GILARDI G, SHARF I. Literature survey of contact dynamics modelling[J]. Mechanism and machine theory, 2002, 37[10]:1213-1239. [39] ABRUZZO M, BEGHINI M, SANTUS C. Mechanical energy dissipation due to the propagation of elastic waves during the lateral impact of elastic cylinder[J]. Journal of Sound and Vibration, 2022, 535:117075. [40] ZHAO P, LIU J, LI Y. A spring-damping contact force model considering normal friction for impact analysis[J]. Nonlinear Dynamics, 2021, 105:1437-1457. [41] ZHANG J, HUANG C, ZHAO L, et al. Continuous contact force model with an arbitrary damping term exponent: Model and discussion[J]. Mechanical Systems and Signal Processing, 2021, 159:107808. [42] ZHANG J, LIANG X, ZHANG Z, et al. A continuous contact force model for impact analysis[J]. Mechanical Systems and Signal Processing, 2022, 168:108739. [43] ZHANG J, FANG M, ZHAO L, et al. A continuous contact force model for the impact analysis of hard and soft materials[J]. Mechanism and Machine Theory, 2022, 177:105065. [44] 刘 雷. 弹丸-身管耦合系统动力学模型[J]. 振动与冲击, 2007, 26(06):121-124+188. LIU L. Dynamic model of the projectile-barrel coupling system[J]. Journal of Vibration and Shock, 2007, 26(06):121-124+188. [45] 李云涛, 全齐全, 唐德威, 等. 轴孔协调接触建模与试验研究[J]. 哈尔滨工程大学学报, 2016, 37(11):1546-1552. LI Y T, QUAN Q Q, TANG D W, et al. Modeling and experimental research on a coordinated contact between a shaft and hole[J]. Journal of Harbin Engineering University, 2016, 37(11):1546-1552. [46] Isaac F, Marques F, Dourado N, et al. A finite element model of a 3D dry revolute joint incorporated in a multibody dynamic analysis[J]. Multibody System Dynamics, 2019, 45(03):293-313. [47] 芮筱亭. 多体系统发射动力学进展与应用[J]. 振动、测试与诊断, 2017, 37(02):213-220+398. RUI X T. New developments in launch dynamics of multibody system and its applications[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(02):213-220+398.
PDF(4038 KB)

520

Accesses

0

Citation

Detail

Sections
Recommended

/