Mechanism of the vortex-induced vibration control for twin-box girders with central baffle plates

TAN Zhongxu1,2,GUO Guohe3,4,ZHU Ledong1,2,ZHU Qing1,2,QUAN Honglie5

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (6) : 189-195.

PDF(3227 KB)
PDF(3227 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (6) : 189-195.

Mechanism of the vortex-induced vibration control for twin-box girders with central baffle plates

  • TAN Zhongxu1,2,GUO Guohe3,4,ZHU Ledong1,2,ZHU Qing1,2,QUAN Honglie5
Author information +
History +

Abstract

This study investigates the vortex-induced vibration (VIV) performance of twin-box girders and the mechanism of vortex-induced vibration control by central baffle plates through wind tunnel tests and computational fluid dynamics (CFD). The effectiveness of different types (horizontal, one vertical, and two vertical plates) and sizes of central baffle plates is compared, and the corresponding VIV control mechanisms are discussed based on the streamlines and vorticity magnitude contours. The results demonstrate that horizontal plates impede airflow, reduce wind velocity near the section, increase vortex shedding difficulty, and thus control VIV. Control effectiveness increases with plate width. Meanwhile, vertical plates stabilize vortices in small areas, prevent vortex shedding, and effectively control VIV. The control effect of two half-height vertical plates is superior to that of one full-height vertical plate, with optimization of the distance between the plates required.

Key words

twin-box girder / vortex-induced vibration / central baffle plate / wind tunnel test / computational fluid dynamics

Cite this article

Download Citations
TAN Zhongxu1,2,GUO Guohe3,4,ZHU Ledong1,2,ZHU Qing1,2,QUAN Honglie5. Mechanism of the vortex-induced vibration control for twin-box girders with central baffle plates[J]. Journal of Vibration and Shock, 2024, 43(6): 189-195

References

[1] 陈政清,黄智文. 大跨度桥梁竖弯涡振限值的主要影响因素分析 [J]. 中国公路学报,2015, 28(9): 30-37. CHEN Zheng-qing, HUANG Zhi-wen. Analysis of main factors influencing allowable magnitude of vertical vortex-induced vibration of long-span bridges [J]. China Journal of Highway and Transport, 2015, 28(9): 30-37. [2] 许福友,丁威,姜峰,等. 大跨度桥梁涡激振动研究进展与展望 [J]. 振动与冲击,2010, 29(10): 40-49. XU Fuyou, DING Wei, JIANG Feng, et al. Development and prospect of study on vortex-induced vibration of long-span bridges [J]. Journal of Vibration and Shock, 2010, 29(10): 40-49. [3] 葛耀君,赵林,许坤. 大跨桥梁主梁涡激振动研究进展与思考 [J]. 中国公路学报,2019, 32(10): 1-18. GE Yaojun, ZHAO Lin, XU Kun. Review and reflection on vortex-induced vibration of main girders of long-span bridges [J]. China Journal of Highway and Transport, 2019, 32(10): 1−18. [4] 赵林,刘丛菊,葛耀君. 桥梁结构涡激共振的敏感性 [J]. 空气动力学学报,2020, 38(4): 694-704. ZHAO Lin, LIU Congju, GE Yaojun. Vortex-induced vibration sensitivity of bridge girder structures [J]. Acta Aerodynamica Sinica, 2020, 38(4): 694-704. [5] 李永乐,侯光阳,向活跃,周平,廖海黎. 大跨度悬索桥钢箱主梁涡振性能优化风洞试验研究 [J]. 空气动力学学报,2011, 29(6): 702-708. LI Yong-le, HOU Guang-yang, XIANG Huo-yue, et al. Optimization of the vortex induced vibration for steel box girder of long span suspension bridges by wind tunnel test [J]. Acta Aerodynamica Sinica, 2011, 29(6): 702-708. [6] 孟晓亮,郭震山,丁泉顺,等. 风嘴角度对封闭和半封闭箱梁涡振及颤振性能的影响 [J]. 工程力学,2011, 28(s1): 184-188. MENG Xiaoliang, GUO Zhenshan, DING Quanshun, et al. Influence of wind fairing angle on vortex-induced vibrations and flutter performances of closed and semi-closed box decks [J]. Engineering Mechanics, 2011, 28(s1): 184-188. [7] 李明水,孙延国,廖海黎,等. 港珠澳大桥大挑臂钢箱梁涡激振动特性及抑振措施 [J]. 清华大学学报(自然科学版),2020, 60(1): 57-65. LI Mingshui, SUN Yanguo, LIAO Haili, et al. Vortex-induced vibration of steel box girder with large projecting slab and its mitigation countermeasures for Hong Kong-Zhuhai-Macao Bridge [J]. Journal of Tsinghua University (Science and Technology), 2020, 60(1): 57-65. [8] Xin D B, Zhan J, Zhang H F, et al. Control of vortex-induced vibration of a long-span bridge by inclined railings [J]. Journal of Bridge Engineering, 2021, 26(12): 04021093. [9] Yan Y X, Yagi T, Noguchi K, et al. Effects of handrail details on vortex-induced vibration for a box-girder bridge [J]. Journal of Bridge Engineering, 2022, 27(3): 04021114. [10] 汪志雄,张志田,郄凯,吴长青. π型开口截面斜拉桥弯扭耦合涡激共振及气动减振措施研究 [J]. 振动与冲击,2021, 40(1): 52-57. WANG Zhixiong, ZHANG Zhitian, QIE Kai, et al. Bending-torsion coupled vortex induced resonance of π - type open section cable stayed bridge and aerodynamic vibration reduction measures [J]. Journal of Vibration and Shock, 2021, 40(1): 52-57. [11] 董佳慧,黄林,王骑,等. Π型钢-混叠合梁斜拉桥涡振性能及整流罩制振措施研究 [J]. 振动与冲击,2022, 41(16): 50-57. DONG Jiahui, HUANG Lin, WANG Qi, et al. Vortex-induced vibration performance of a cable-stayed bridge with a Π-shaped steel-concrete composite girder and aerodynamic countermeasure research [J]. Journal of Vibration and Shock, 2022, 41(16): 50-57. [12] Laima S J, Li H, Chen W L, et al. Investigation and control of vortex-induced vibration of twin box girders [J]. Journal of Fluids and Structures, 2013, 39: 205-221. [13] Gao D L, Deng Z, Yang W H, et al. Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach [J]. Journal of Fluids and Structures, 2021, 105: 103348. [14] 冯丛,华旭刚,胡腾飞,等. .箱桁梁断面斜拉桥涡振性能及抑振措施的研究 [J]. 铁道建筑,2016, 2:9-13. FENG Cong, HUA Xugang, HU Tengfei, et al. Research on vortex-induced vibration and its control for cable-stayed bridge with box-truss composite girder [J]. Railway Engineering, 2016, 2:9-13. [15] 何晗欣,李加武,周建龙. 中央开槽箱形断面斜拉桥的涡激振动试验与分析 [J]. 桥梁建设,2012, 42(2): 34-40. HE Han-xin, LI Jia-wu, ZHOU Jian-long. Testing and analysis of vortex-excited vibration of central slotted box section cable-stayed bridge [J]. Bridge Construction, 2012, 42(2): 34-40. [16] 王骑,林道锦,廖海黎,等. 分体式钢箱梁涡激振动特性及制振措施风洞试验研究 [J]. 公路,2013, 7: 294-299. [17] 杨詠昕,周锐,葛耀君. 大跨度分体箱梁桥梁涡振性能及其控制 [J]. 土木工程学报,2014, 47(12): 107-114. YANG Yongxin, ZHOU Rui, GE Yaojun. Vortex-induced vibration and its control for long-span bridges with twin-box girder [J]. China Civil Engineering Journal, 2014, 47(12): 107-114. [18] 杨婷,周志勇. 中央开槽箱梁涡激共振特性及抑振措施机理研究 [J]. 振动与冲击,2015, 34(10): 76-83. YANG Ting, ZHOU Zhi-Yong. Vortex-induced resonance characteristics and anti-vibration measures' mechanism of central-slotted box girders [J]. Journal of Vibration and Shock, 2015, 34(10): 76-83. [19] 李志国,周强,马存明,等. 中央格栅抑制分离式双箱梁涡振的机理研究 [J]. 桥梁建设,2018, 48(1): 19-24. LI Zhi-guo, ZHOU Qiang, MA Cun-ming, et al. Mechanism of suppressing vortex-induced vibration of twin-box girder using central grids [J]. Bridge Construction, 2018, 48(1): 19-24. [20] 程怡,周锐,杨詠昕,等. 中央稳定板对分体箱梁桥梁的涡振控制 [J]. 同济大学学报(自然科学版),2019, 47(5): 617-626. CHENG Yi, ZHOU Rui, YANG Yongxin, et al. Vortex-induced vibration control for twin box girder bridges with veritical central stabilzers [J]. Journal of Tongji University, 2019, 47(5): 617-626. [21] 马存明,王俊鑫,罗楠,等. 宽幅分体箱梁涡振性能及其抑振措施 [J]. 西南交通大学学报,2019, 54(4): 724-730. MA Cunming, WANG Junxin, LUO Nan, et al. Vortex-induced vibration performance and control measures of wide twin-box girder [J]. Journal of Southwest Jiaotong University, 2019, 54(4): 724-730.
PDF(3227 KB)

Accesses

Citation

Detail

Sections
Recommended

/