Coupled vibration characteristics and vibration control of roll system of 20-high rolling mill

KONG Xianglan1,2, HE Dongping1,2, XU Huidong1,2, WANG Tao1,2, HUANG Qingxue1,2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (7) : 278-289.

PDF(3211 KB)
PDF(3211 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (7) : 278-289.

Coupled vibration characteristics and vibration control of roll system of 20-high rolling mill

  • KONG Xianglan1,2, HE Dongping1,2, XU Huidong1,2, WANG Tao1,2, HUANG Qingxue1,2
Author information +
History +

Abstract

Precision Ultra-thin strips are widely used in high technology fields such as micro-manufacturing and micro-electronics because of their high precision, corrosion resistance and excellent surface finish. The coupling vibration of the roll system of a twenty-roll mill has an important impact on the production of Ultra-thin strips. Considering the nonlinear rolling interface formed by the variations of rolling process and lubrication state, a coupling dynamic model of the roll system of twenty-high rolling mill is established. The amplitude-frequency characteristic equations of the primary resonance and internal resonance are solved by applying the multi-scale method, and the effects of different parameters on the amplitude-frequency characteristic curves are analyzed. The relationship between different parameters and the system bifurcation is explored based on the singularity theory. Meanwhile, the system stability is judged and analyzed according to the Lyapunov’s first approximation stability criterion, combined with the phase trajectory diagram of the system dynamic phase plane. Afterward, a state feedback controller is designed based on the principle of Washout filter controller, and the influence of control gain on the amplitude-frequency characteristics is analyzed by transforming the state space expression of the system. Simulation and comparison verify the feasibility and effectiveness of the designed controller by using time domain diagram, phase diagram, spectrum diagram and Poincaré cross-section diagram, which provides some theoretical guidance for the study of twenty-roll mill vibration and its control.

Key words

twenty-high rolling mill / nonlinear rolling interface / multi-scale method / amplitude-frequency characteristic / stability / washout filter controller

Cite this article

Download Citations
KONG Xianglan1,2, HE Dongping1,2, XU Huidong1,2, WANG Tao1,2, HUANG Qingxue1,2. Coupled vibration characteristics and vibration control of roll system of 20-high rolling mill[J]. Journal of Vibration and Shock, 2024, 43(7): 278-289

References

[1] YARITA I, FURUKAWA K, SEINO Y, et al. ANALYSIS of chattering in cold rolling for ultrathin gauge steel strip.[J]. Transactions of the Iron and Steel Institute of Japan, 1976, 18(1): 1–10. [2] KAPIL S, EBERHARD P, DWIVEDY S K. Nonlinear dynamic analysis of a parametrically excited cold rolling mill[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2014, 136(041012): 1-9. [3] ZHANG G, BAO J, LI W, et al. Coupled vibration characteristics analysis of hot rolling mill with structural gap[J]. Shock and Vibration, 2021,2021: 1–10. [4] 刘飞, 刘彬, 时培明, 等. 液压缸非线性约束下的轧机辊系振动行为[J]. 机械工程学报, 2014, 50(24): 59–65. LIU Fei, LIU Bin, SHI Pei-ming, et al. Vibration Behavior of Roll System under Nonlinear Constraints of the Hydraulic Cylinder[J]. Journal of Mechanical Engineering, 2014, 50(24): 59–65. [5] LIU Z, PAN G, JIANG J, et al. Vibration characteristics of rolling mill system under constraints of the nonlinear spring force and friction force from hydraulic cylinder[J]. Shock and Vibration, 2021, 2021: 1–10. [6] LIU Z, LI P, JIANG J, et al. Research on vibration characteristics of mill rolls based on nonlinear stiffness of the hydraulic cylinder[J]. Journal of Manufacturing Processes, 2021, 64: 1322–1328. [7] ZHANG Y, JIANG W, ZHU Y, et al. Research on the vertical vibration characteristics of hydraulic screw down system of rolling mill under nonlinear friction[J]. Processes, 2019, 7(11): 792. [8] HOU D, XU L, SHI P. Vertical–horizontal coupling nonlinear vibration characteristics of rolling mill under mixed lubrication[J]. Journal of Iron and Steel Research International, 2021, 28(5): 574–585. [9] 侯东晓,徐 良,时培明.混合润滑状态下板带轧机垂直振动特性研究[J].振动与冲击。2021,40(24):243-248. HOU Dong-xiao, XU Liang, SHI Pei-ming. A study on vertical vibration characteristics of strip mill under mixed lubrication. Journal of vibration and shock, 2021, 40(24): 243-248. [10] PENG R, ZHANG X, SHI P. Vertical–horizontal coupling vibration of hot rolling mill rolls under multi-piecewise nonlinear constraints[J]. Metals, 2021, 11(1): 170. [11] PENG R. Nonlinear vibration characteristics and time-delayed displacement control of rolling mill under dynamic rolling force[J]. Journal of Vibroengineering, 2021, 23(7): 1535–1548. [12] LU X, SUN J, LI G, et al. Stability analysis of a nonlinear coupled vibration model in a tandem cold rolling mill[J]. Shock and Vibration, 2019, 2019: 1–14. [13] 贾志伟,李元华,张海利等.ZR22B52″型二十辊森吉米尔轧机辊系分析技术研究[J].轧钢,2020,37(04):74-77+112. JIA Zhi-wei, LI Yuan-hua, ZHANG Hai-li, et al. Research on the roll system analysis technology of ZR22B52” 20-high sendzimir rolling mill[J]. Steel rolling, 2020,37(04):74-77+112. [14] 姜东友.二十辊森吉米尔轧机板形控制方法[J].中国冶金,2019,29(06):65-67. JIANG Dong-you. Shape control method for 20-roll sendzimir mill[J]. China Metallurgy,2019,29(6):65-67. [15] 张清东,代畅,文杰等.二十辊森吉米尔轧机板形调控性能仿真研究[J].轧钢,2013,30(03):1-6. ZHANG Qing-dong, DAI Chang, WEN Jie, et al. Simulation and analysis on shape control behavior of 20-h sendzimir mill. [J]. Steel rolling, 2013,30(03):1-6. [16] 王崇涛,方康玲.森吉米尔轧机的板形控制[J].轧钢,2005,22(04):14-16+23. WANG Chong-tao, FANG Kang-ling. Shape control on sendzimir mill[J]. Steel rolling,2005,22(04):14-16+23. [17] 储双杰,汤文杰,梁高飞等.吉帕钢冷轧板形及厚度精度控制技术研究[J].轧钢,2022,39(02):51-56. CHU Shuang-jie, TANG Wen-jie, LIANG Gao-fei, et al. Research on flateness and thickness accuracy control of cold rolled x GPa steel sheet[J]. Steel rolling, 2022,39(02):51-56. [18] 曹建国,江军,邱澜等.新一代高技术宽带钢冷轧机全机组一体化板形控制[J].中南大学学报(自然科学版),2019,50(07):1584-1591. CAO Jian-guo, JIANG Jun, QIU Lan, et al. High precision integrated profile and flatness control for new-generation high-tech wide strip cold rolling mills[J]. Journal of Central South University (Science and Technology), 2019,50(07):1584-1591. [19] WU S, SHAO Y, WANG L, et al. Relationship between chatter marks and rolling force fluctuation for twenty-high roll mill[J]. Engineering Failure Analysis, 2015, 55: 87–99. [20] WU S, WANG L, SHAO Y, et al. Vibration characteristic analysis of twenty-high rolling mill with local defect on roll surface based on the time-varying contact stiffness[J]. Engineering Failure Analysis, 2014, 42: 297–310. [21] HE R Y, LIU J, YUAN Y L, et al. Vibration characteristics analysis of a 20-high sendzimir mill with localized defect on the working roller[C]//25th International Congress on Condition Monitoring and Diagnostic Engineering, COMADEM 2012, June 18, 2012 -June 20, 2012. Huddersfield, United kingdom: Institute of Physics Publishing, 2012. [22] WANG Z H, GAO Q J, YAN C, et al. Calculation and analysis of force in roll system of 20-high sendzimir mill[J]. Journal of Iron and Steel Research (International),2013,20(09):33-39. [23] 袁凯, 赵志毅, 李显龙, 等. 二十辊森吉米尔轧机辊系稳定性的有限元分析[J]. 轧钢, 2018, 35(3): 52–56. YUAN Kai, ZHAO Zhi-yi, LI Xian-long, et al. Finite element analysis of the stability of roll system on 20-high Sendzimir mill[J].Steel rolling, 2018, 35(3): 52–56. [24] QI J, WANG X, YAN X. Influence of mill modulus control gain on vibration in hot rolling mills[J]. Journal of Iron and Steel Research International, 2020, 27(5): 528–536. [25] QIAN C, ZHANG L, HUA C, et al. Adaptive fuzzy vertical vibration suppression control of the mechanical-hydraulic coupling rolling mill system with input dead-zone and output constraints[J]. IEEE Access, 2020, 8: 85793–85801. [26] 华长春, 陈佳强, 陈健楠, 等. 未知扰动下冷轧机扭振自适应预定性能控制[J]. 机械工程学报, 2021, 57(4): 202–209. HUA Chang-chun, CHEN Jia-qiang, CHEN Jian-nan, et al.Adaptive Prescribed Performance Control for Torsional Vibration of Cold Rolling Mill with Disturbance Uncertainties[J]. Journal of Mechanical Engineering, 2021, 57(4): 202–209. [27] ZENG L, ZANG Y, GAO Z. Hopf bifurcation control for rolling mill multiple-mode-coupling vibration under nonlinear friction[J]. Journal of Vibration and Acoustics, 2017, 139(6):1-49. [28] WANG J, MA L, WANG Y. Hopf bifurcation control for the main drive delay system of rolling mill[J]. Advances in Difference Equations, 2020, 2020(211): 1-12. [29] 张义方, 闫晓强, 凌启辉. 多源激励下CSP轧机主传动扭振问题研究[J]. 机械工程学报, 2017, 53(10): 34–42. ZHANG Yi-fang, YAN Xiao-qiang, LING Qi-hui. Research on Torsional Vibration of Main Drive System under Multi-source Excitation in CSP Rolling Mill[J]. Journal of Mechanical Engineering, 2017, 53(10): 34–42. [30] 和东平, 王涛, 解加全, 等. 波纹辊轧机辊系主共振分岔控制研究[J]. 机械工程学报, 2020, 56(7): 109–118. HE Dong-ping, WANG Tao, XIE Jia-quan, et al. Research on Principal Resonance Bifurcation Control of Roller System in Corrugated Rolling Mills[J]. Journal of Mechanical Engineering, 2020, 56(7): 109–118. [31] ZHAI C, YANG C, NA J. Bifurcation control on the un-linearizable dynamic system via washout filters[J]. Sensors, 2022, 22(23). [32] LIU S, LIU J, WU Z, et al. Bifurcation control for electromechanical coupling torsional vibration in rolling mill system driven by dc motor[J]. International Journal of Applied Electromagnetics and Mechanics, 2016, 50(1): 113–125. [33] 侯东晓,王新刚,张华伟,等.非线性动态轧制过程下冷轧机参激振动特性[J].东北大学学报(自然科学版),2017,38(12):1754-1758+1789. HOU Dong-xiao, WANG Xin-gang, ZHANG Hua-wei, et al. Parametrically excited vibration characteristics of cold rolling mill under nonlinear dynamic rolling process[J]. Journal of Northeastern University, 2017, 38(12): 1754–1758 and 1789. [34] PENG R, ZHANG X, SHI P. Coupled vibration behavior of hot rolling mill rolls under multinonlinear effects[J]. Shock and Vibration, 2020, 2020: 1–14. [35] LIU X, ZANG Y, GAO Z, et al. Time delay effect on regenerative chatter in tandem rolling mills[J]. Shock and Vibration, 2016, 2016:1-15. [36] CIRILLO G I, HABIB G, KERSCHEN G, et al. Analysis and design of nonlinear resonances via singularity theory[J]. Journal of Sound and Vibration, 2017, 392: 295–306. [37] ZHOU S, LIAO X, YU J, et al. On control of hopf bifurcation in time-delayed neural network system[J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 338(3–5): 261–271. [38] 郜志英, 白露露, 李强. 薄板冷连轧自激振动的临界轧制速度研究[J]. 机械工程学报, 2017, 53(12): 118–132. GAO Zhi-ying, BAI Lu-lu, LI Qiang. Research on Critical Rolling Speed of Self-excited Vibration in the Tandem Rolling Process of Thin Strip[J]. Journal of Mechanical Engineering, 2017, 53(12): 118–132. [39] Yun I S, Wilson W R D, Ehmann K F. Chatter in the Strip Rolling Process, Part 1: Dynamic Model of Rolling [J]. Trans. ASME: J. Manufact. Sci. Eng. 1998, 120(2): 330-336. [40] Yun I S, Wilson W R D, Ehmann K F. Review of chatter studies in cold rolling [J]. International Journal of Machine Tools and Manufacture,1998,38(12).
PDF(3211 KB)

Accesses

Citation

Detail

Sections
Recommended

/