Research on crack propagation mechanism of rock impacted by particles under confining pressure

LIU Yong1,2,LI Xing1,2,GUO Xinhui1,2,WEI Jianping1,2,SONG Dazhao3

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (8) : 1-10.

PDF(3286 KB)
PDF(3286 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (8) : 1-10.

Research on crack propagation mechanism of rock impacted by particles under confining pressure

  • LIU Yong1,2,LI Xing1,2,GUO Xinhui1,2,WEI Jianping1,2,SONG Dazhao3
Author information +
History +

Abstract

In order to reveal the influence of the confining pressure on the formation and expansion mechanism of rock fissures under particle impact, particle impact rock-breaking experiments and micro-nano industrial CT scanning experiments were carried out, which clarified the influence of the confining pressure on the characteristics of the rock fissure expansion under the action of particle impact; and numerical simulations were carried out on the particle impact under the conditions of different confining pressures, to analyze the evolution process of the rock's stress and fissure fields, and to reveal the intrinsic mechanism of the confining pressure influencing the expansion of fissures. The results show that after the particles impact the rock, a fracture zone and intergranular main crack propagation zone are thus formed in the rock. The shear stress and tensile stress caused by compressive stress are the main reasons for the formation of the fracture zone, while the formation of the intergranular main crack propagation zone is mainly due to tangential derived tensile stress. The confining pressure induces prestress between rock particles such that the derived tensile stress needs to overcome the initial compressive stress between the particles to form tensile fractures. And the increase in the confining pressure leads to increases in the proportion of shear cracks and friction effects between rock particles, resulting in an increase in energy consumption for the same number of cracks,which inhibits the formation of the fracture zone and intergranular main crack propagation zone.

Key words

water jet / particle jet / impacting breaking rock / auxiliary rock breaking / hard rock tunneling

Cite this article

Download Citations
LIU Yong1,2,LI Xing1,2,GUO Xinhui1,2,WEI Jianping1,2,SONG Dazhao3. Research on crack propagation mechanism of rock impacted by particles under confining pressure[J]. Journal of Vibration and Shock, 2024, 43(8): 1-10

References

[1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. XIE Heping. Research review of the state key research development program of China:Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. [2] 刘志强, 宋朝阳, 程守业, 等. 千米级竖井全断面科学钻进装备与关键技术分析[J]. 煤炭学报, 2020, 45(11): 3645-3656. LIU Zhiqiang, SONG Chaoyang, CHENG Shouye, et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts [J]. Journal of China Coal Society, 2020, 45(11): 3645-3656. [3] 刘勇, 郭鑫辉, 魏建平等. 岩弹冲击破岩规律试验研究[J]. 振动与冲击, 2023, 42(04): 270-278+305. LIU Yong, GUO Xinhui, WEI Jianping, et al. An experimental study on rock breaking law by rock bullet impacting[J]. Journal of Vibration and Shock, 2021, 35(6): 895-903. [4] 程桦, 唐彬, 唐永志, 等. 深井巷道全断面硬岩掘进机及其快速施工关键技术[J]. 煤炭学报, 2020, 45(9): 3314-3324. CHEN Hua, TANG Bin, TANG Yongzhi, et al. Full face tunnel boring machine for deep-buried roadways and its key rapid excavation technologies[J]. Journal of China Coal Society, 2020, 45(9): 3314-3324. [5] 刘勇, 代硕, 魏建平, 等. 低压磨料空气射流破硬岩规律及特征实验研究[J]. 岩石力学与工程学报, 2022, 41(6): 1172-1182. LIU Yong, DAI Shuo, WEI Jianping, et al. Experimental study on hard rock breaking laws and characteristics by low-pressure abrasive air jet[J]. Chinese Journal of Rock Mechanics and Engineering 2022, 41(6): 1172-1182. [6] 刘勇, 陈长江, 刘笑天, 等. 高压水射流破岩能量耗散与释放机制[J]. 煤炭学报, 2017, 42(10): 2609-2615. LIU Yong, CHEN Changjiang, LIU Xiaotian, et al. Mechanism on energy dissipation and release of rock breakage with high pressure water jets[J]. Journal of China Coal Society, 2017, 42(10): 2609-2615. [7] Farmer I W , Attewell P B . Rock penetration by high velocity water jet A review of the general problem and an experimental study[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1965, 2(2):135,IN7,143-142,IN10,153. [8] Ciccu R , Grosso B . Improvement of Disc Cutter Performance by Water Jet Assistance[J]. Rock Mechanics and Rock Engineering, 2014, 47(2):733-744. [9] Zhang J , Li Y , Zhang Y , et al. Using a high-pressure water jet-assisted tunnel boring machine to break rock[J]. Advances in Mechanical Engineering, 2020, 12(10):168781402096229. [10] 刘勇, 陈长江, 魏建平, 等. 磨料水射流与磨料气体射流破岩压力对比分析[J]. 煤炭学报, 2018, 43(9): 2510-2517. LIU Yong, CHEN Changjiang, WEI Jianping, et al. Comparison analysis on the rock breakage pressure induced by abrasive water jets and abrasive gas jets[J]. Journal of China Coal Society, 2018, 43(9): 2510-2517. [11] 李密, 王岩楼, 王亚丽, 等. 激光破岩的理论分析与数值模拟[J]. 中国激光, 2008(08): 1245-1249. LI Mi, WANG Yanlou, WANG Yali, et al. Theoretical Analysis and Numerical Simulation of Laser to Rock[J]. Chinese Journal of Lasers, 2008(8): 1245-1249. [12] 李美艳, 韩彬, 张世一, 等. 激光辅助破岩规律及力学性能研究[J]. 应用激光, 2015, 35(03): 363-368. LI Meiyan, HAN Bin, ZHANG Shiyi, et al. Study on Laser Assisted Rock Breaking Law and Mechanical Properties[J]. Applied Laser, 2015, 35(3): 363-368. [13] 卢高明, 李元辉, HASSANI Ferri, 等. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报, 2016, 38(8): 1497-1506. LU Gaoming, LI Yuanhui, HASSANI Ferri, et al. Review of theoretical and experimental studies on mechanical rock fragmentation using microwave-assisted approach[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1497-1506. [14] TIBBITTS G A, GALLOWAY G G. Particle drilling alters standard rock-cutting approach[J]. World Oil, 2008, 229 (6): 1. [15] HARTLEY F. Particle drilling technologies completes first phase of test[J]. Offshore, 2008, 68: 30-31. [16] HARDISTY T. Particle drilling pulverizes hard rocks[J]. The American Oil and Gas Reporter, 2007, 50: 86, 88-89. [17] 祝效华, 何灵, 刘伟吉, 等. 粒子射流及其辅助钻齿破岩规律研究[J/OL]. 西南石油大学学报(自然科学版): 1-11[2022-9-10]. ZHU Xiaohua, HE Ling, LIU Weiji, et al. Research on particle jet and its auxiliary drill tooth breaking law[J/OL]. Journal of Southwest Petroleum University (Science & Technology Edition): 1-11[2022-9-10]. [18] Zhao C, Niu J, Zhang Q, et al. Numerical Simulations on Cracking Behavior of Rock-Like Specimens with Single Flaws under Conditions of Uniaxial and Biaxial Compressions[J]. Journal of materials in civil engineering, 2019, 31(12):04019305.1-04019305.8. [19] Chen M, Zang C, Ding Z, et al. Effects of confining pressure on deformation failure behavior of jointed rock[J]. Journal of Central South University, 2022, 29(4): 1305-1319. [20] POTYONDY D O. A grain-based model for rock:approaching the true microstructure[C]//Proceedings of the Rock Mechanics in the Nordic Countries. Norway: Kongsberg,2010:225–234. [21] 邹久群, 张金松, 庞建勇. 基于离散元法的镶齿冲击与切削破岩效果数值分析研究[J]. 振动与冲击, 2022, 41(22): 173-183. ZOU Jiuqun, ZHANG Jinsong, Pang Jianyong. Numerical analysis on the rock-breaking effect of impacting and cutting actions of inserted tooth cutters based on the discrete element method[J]. Journal of Vibration and Shock, 2022, 41(22): 173-183. [22] 刘志林, 孙巍巍, 王晓鸣. 基于颗粒流离散元模型的弹丸侵彻细观混凝土数值模拟方法研究[J]. 振动与冲击, 2016, 35(4): 162-169+176. LIU Zilin, SUN Weiwei, WANG Xiaoming, et al. Numerical simulation for projectile penetrating meso-scale concrete based on particle flow discrete element model [J]. Journal of Vibration and Shock, 2016, 35(4): 162-169+176. [23] Zhang X P , Wong L N Y .Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression[J].International Journal of Fracture, 2013(1):180.
PDF(3286 KB)

Accesses

Citation

Detail

Sections
Recommended

/