Design and performance study of wireless metal corrosion probes using piezoelectric tube stack

WANG Jianjun1,LIU Honghui2,CAO Yalei1,FU Xuanming3,LI Weijie3,LUO Mingzhang4,LAN Chengming2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (8) : 19-33.

PDF(3223 KB)
PDF(3223 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (8) : 19-33.

Design and performance study of wireless metal corrosion probes using piezoelectric tube stack

  • WANG Jianjun1,LIU Honghui2,CAO Yalei1,FU Xuanming3,LI Weijie3,LUO Mingzhang4,LAN Chengming2
Author information +
History +

Abstract

A type of metal corrosion probes was proposed using piezoelectric tube stack and electro mechanical impedance (EMI) technique. The probe consists of a piezoelectric tube stack and a metal bar. The transfer matrix model of the multilayer structured probe in longitudinal vibration mode was established, and the electrical impedance was derived to solve the first resonance and anti-resonance frequencies. The theoretical results were validated by comparing them with those of the special cases in the published literature. In addition, the probe performance was studied systematically through theoretical analysis, artificial uniform corrosion experiments, temperature-sensitive experiments, accelerated corrosion tests, and wireless impedance measurement experiments. The results show that the first resonance and anti-resonance frequencies of the probe are increased with the decrease of the bar length, the increase of the corrosion days, and decreased with the increase of temperature. The measured impedance spectra of the wireless impedance measurement system are very consistent with the test results of the traditional impedance analyzer. The present study provides an important reference for developing the novel metal corrosion probes of wireless quantitative measurement.

Key words

metal corrosion probe / piezoelectric tube stack / electromechanical impedance technique / wireless / quantitative measurement / transfer matrix model

Cite this article

Download Citations
WANG Jianjun1,LIU Honghui2,CAO Yalei1,FU Xuanming3,LI Weijie3,LUO Mingzhang4,LAN Chengming2. Design and performance study of wireless metal corrosion probes using piezoelectric tube stack[J]. Journal of Vibration and Shock, 2024, 43(8): 19-33

References

[1] 刘春斌, 王琦, 牛承东, 等. 油套管腐蚀挂片监测技术[J]. 测井技术, 2020, 44(04): 418-421. LIU Chunbin, WANG Qi, NIU Chengdong, et al. Monitoring technology for corrosion coupon in oil casing[J]. Well Logging Technology, 2020, 44(04): 418-421. [2] 孙海. 天然气压气站内腐蚀挂片监测管道内腐蚀[J]. 腐蚀与防护, 2011, 32(03): 239-242. SUN Hai. Internal corrosion monitoring of pipelines in natural gas compression stations using corrosion coupons[J]. Corrosion and Protection, 2011, 32(03): 239-242. [3] Cousins A, Ilyushechkin A, Pearson P, et al. Corrosion coupon evaluation under pilot-scale CO2 capture conditions at an Australian coal-fired power station[J]. Greenhouse Gases: Science and Technology, 2013, 3(03): 169-184. [4] Du Y X, Qin H M, Liu J, et al. Research on corrosion rate assessment of buried pipelines under dynamic metro stray current[J]. Materials and Corrosion, 2021, 72(06): 1038-1050. [5] Li W J, Liu T J, Zou D J, et al. PZT based smart corrosion coupon using electromechanical impedance[J]. Mechanical Systems and Signal Processing, 2019, 129: 455-469. [6] 黎赫东, 艾德米, 朱宏平. 基于压缩感知理论重构压电阻抗信号的钢结构损伤识别[J]. 建筑结构学报, 2022, 43(07): 230-238. LI Hedong, AI Demi, ZHU Hongping. Damage identification of steel structures based on reconstructed electromechanical impedance signals using compressed sensing theory[J]. Journal of Building Structures, 2022, 43(07): 230-238. [7] 李俊华, 何思聪, 陈文龙, 等. 基于压电阻抗效应的套筒灌浆饱满度识别与应用[J]. 土木工程学报, 2020, 53(05): 65-77+117. LI Junhua, HE Sicong, CHEN Wenlong, et al. Identification and application of sleeve grouting plumpness based on piezoelectric impedance effect[J]. China Civil Engineering Journal, 2020, 53(05): 65-77+117. [8] 张政, 王涛, 鲁光涛, 等. 基于压电阻抗技术的结构初始裂纹监测研究[J]. 传感技术学报, 2019, 32(04): 631-636. ZHANG Zheng, WANG Tao, LU Guagtao, et al. Study on structure initial crack monitoring based on piezoelectric impedance technique[J]. Chinese Journal of Sensors and Actuators, 2019, 32(04): 631-636. [9] 蔡金标, 吴涛, 陈勇. 基于压电阻抗技术监测混凝土强度发展的实验研究[J]. 振动与冲击, 2013, 32(02): 124-128. CAi Jinbiao, WU Tao, CHEN Yong. Tests for monitoring strength development of concrete based on EMI technique[J]. Journal of Vibration and Shock, 2013, 32(02): 124-128. [10] 王丹生, 朱宏平, 鲁晶晶, 等. 基于压电导纳的钢框架螺栓松动检测试验研究[J]. 振动与冲击, 2007, 26(10): 157-160+194-195. WANG Dansheng, ZHU Hongping, LU Jingjing, et al. Experimental study on detecting loosened bolts of a steel frame based on piezoelectric admittance[J]. Journal of Vibration and Shock, 2007, 26(10): 157-160+194-195. [11] 邵俊华, 王涛, 汪正傲, 等. 基于压电阻抗频率变化的螺栓松动检测技术[J]. 中国机械工程, 2019, 30(12): 1395-1399+1408. SHAO Junhua, WANG Tao, WANG Zhengao, et al. Bolt looseness detection using piezoelectric impedance frequency shift method[J]. China Mechanical Engineering, 2019, 30(12): 1395-1399+1408. [12] 张鑫, 孙小飞, 周文松, 等. 基于压电阻抗和主成分分析的斜拉索覆冰监测[J]. 哈尔滨工程大学学报, 2020, 41(12): 1765-1771. ZHANG Xin, SUN Xiaofei, ZHOU Wensong, et al. Monitoring of stay-cable icing based on electro-mechanical impedance and principal component analysis[J]. Journal of Harbin Engineering University, 41(12): 1765-1771. [13] 韩芳, 汪程凤, 张全景. 基于压电阻抗技术的木梁损伤识别研究[J]. 压电与声光, 2020, 42(04): 497-500+505. HAN Fang, WANG Chenfeng, ZHANG Quanjing, et al. Damage detection for timber beams based on piezoelectric impedance technology[J]. Piezoelectrics and Acoustooptics, 2020, 42(04): 497-500+505. [14] 温家宇, 许斌, 王海东. 组合结构空洞缺陷检测压电阻抗数值模拟研究[J]. 压电与声光, 2018, 40(02): 276-279. WEN Jiayu, XU Bin, WANG Haidong, et al. Study on numerical simulation of piezoelectric impedance detection of composite concrete structure defects[J]. Piezoelectrics and Acoustooptics, 2018, 40(02): 276-279. [15] Ai D M, Cheng J B. A deep learning approach for electromechanical impedance based concrete structural damage quantification using two-dimensional convolutional neural network[J]. Mechanical Systems and Signal Processing, 2023, 183: 109634. [16] Ai D M, Mo F, Yang F, et al. Electromechanical impedance-based concrete structural damage detection using principal component analysis incorporated with neural network[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(17): 2241-2256. [17] Yang Z Q, Gao W H, Chen L, et al. A novel electromechanical impedance-based method for non-destructive evaluation of concrete fiber content[J]. Construction and Building Materials, 2022, 351: 128972. [18] Li W J, Liu T J, Gao S S, et al. An electromechanical impedance-instrumented corrosion-measuring probe[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(14): 2135-2146. [19] Li W J, Liu T J, Wang J J, et al. Finite-Element Analysis of an Electromechanical Impedance–Based Corrosion Sensor with Experimental Verification[J]. Journal of Aerospace Engineering, 2019, 32(03): 04019012. [20] Li W J, Wang J J, Liu T J, et al. Electromechanical impedance instrumented circular piezoelectric-metal transducer for corrosion monitoring: modeling and validation[J]. Smart Materials and Structures, 2020, 29(03): 035008. [21] Wang J J, Li W J, Lan C M, et al. Electromechanical impedance instrumented piezoelectric ring for pipe corrosion and bearing wear monitoring: A proof-of-concept study[J]. Sensors and Actuators A: Physical, 2020, 315: 112276. [22] Wang J J, Li W J, Luo W, et al. Modeling and experimental validation of a quantitative bar-type corrosion measuring probe using piezoelectric stack and electromechanical impedance technique[J]. Measurement, 2022, 188: 110546. [23] Wang J J, Wen L J, Liu Z S, et al. Design and performance evaluation of electromechanical impedance instrumented quantitative corrosion measuring probe based on conical rods[J]. Smart Materials and Structures, 2022, 31(12): 124001. [24] Wandowski T, Malinowski P H, Ostachowicz W M. Improving the EMI-based damage detection in composites by calibration of AD5933 chip[J]. Measurement, 2021, 171: 108806. [25] Jia S H, Luo M Z. Monitoring of liquid viscosity for viscous dampers through a wireless impedance measurement system[J]. Applied Sciences, 2022, 12(01): 189. [26] Park S H, Park S K. Quantitative corrosion monitoring using wireless electromechanical impedance measurements[J]. Research in Nondestructive Evaluation, 2010, 21(03): 184-192. [27] Tan Z S, Feng Q, Ma T J, et al. Development of an AD5933-based impedance calibration and measurement technology using piezoceramic transducers[J]. Measurement, 2023, 210: 112527. [28] Campos F D S, Castro B a D, Assis H T D, et al. Experimental assessment of impedance-based structural health monitoring in radioactive environment[J]. Measurement Science & Technology, 2023, 34: 085103. [29] Fan S L, Zhao S Y, Kong Q Z, et al. An embeddable spherical smart aggregate for monitoring concrete hydration in very early age based on electromechanical impedance method[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(05): 537-548. [30] 杨子谦, 陈清军, 孙祥涛, 等. 基于混凝土植入式模块与数据融合的裂缝修复监测技术[J]. 振动与冲击, 2023, 42(08): 186-193. YANG Ziqian, CHEN Qingjun, SUN Xiangtao, et al. A technique for monitoring the process of repairing crack based on a concrete implantable module and a data fusion algorithm[J]. Journal of Vibration and Shock, 2023, 42(08): 186-193. [31] Wang J J, Li W J, Lan C M, et al. Effective determination of Young’s modulus and Poisson’s ratio of metal using piezoelectric ring and electromechanical impedance technique: A proof-of-concept study[J]. Sensors and Actuators A: Physical, 2021, 319: 112561. [32] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器 [J]. 物理学报, 2023, 72(05): 216-225. DONG YIlei, CHEN Cheng, LIN Shuyu. Arbitrary variable thickness annular piezoelectric ultrasonic transducer based on transfer matrix method[J]. Acta Physica Sinica, 2023, 72(05): 216-225. [33] Wang D S, Li Z, Zhu H P. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer[J]. Smart Materials and Structures, 2016, 25(07): 075002. [34] 王晨青, 马建敏. 大功率夹心式压电换能器结构参数计算分析及设计[J]. 振动与冲击, 2021, 40(04): 130-137+220. WANG Chenqing, MA Jianmin. Design and structural parameters calculation analysis of a high power sandwich piezoelectric transducer[J]. Journal of Vibration and Shock, 2021, 40(04): 130-137+220. [35] 秦雷, 王丽坤, 唐会彦, 等. 夹心式复合变幅杆换能器频率方程的推导[J]. 振动与冲击, 2011, 30(07): 188-191. QIN Lei, WANG Likun, TANG Huiyan, et al. Frequency equation of a sandwich transducer with complex transformer[J]. Journal of Vibration and Shock, 2011, 30(07): 188-191. [36] Li Y, Shen X, Chen Y C. Design, experiment and verification of a refined resonance method for property measurement of piezoelectric stack[J]. Smart Materials and Structures, 2019, 28(01): 015033. [37] Wang J J, Li W J, Qin L, et al. Effects of electrodes and protective layers on the electromechanical characteristics of piezoelectric stack actuators[J]. Advanced Composites Letters, 2019, 28: 0963693519877419. [38] 田玉琴. 金属基材表面化学转化膜/有机涂膜的构建与防腐性能及其机理[D].华南理工大学, 2022. ZHANG Xinya. Construction of chemical conversion coating/organic coating on metal substrates surfaces, anti-corrosion performance and mechanism[D]. South China University of Technology, 2022. [39] 杲广尧,曹凤婷,高雅等.金属表面有机防腐涂层研究进展[J].材料研究与应用, 2023, 17(02): 251-264. GAO Guanyao, CAO Fengting, GAO Ya, et al. Research progress of organic anti-corrosive coatings on metal components[J]. Material Research and Application, 2023, 17(02): 251-264.
PDF(3223 KB)

Accesses

Citation

Detail

Sections
Recommended

/