A study on flow-solid coupling distributed parameter model and utility of non-standard water tanks in nuclear power engineering

LI Jianbo1,2,LIU Jia1,2,LI Zhiyuan3,LIN Gao1,2

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (8) : 43-51.

PDF(2333 KB)
PDF(2333 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (8) : 43-51.

A study on flow-solid coupling distributed parameter model and utility of non-standard water tanks in nuclear power engineering

  • LI Jianbo1,2,LIU Jia1,2,LI Zhiyuan3,LIN Gao1,2
Author information +
History +

Abstract

In the realm of fluid-structure interaction dynamics, the traditional Housner model plays a pivotal role in engineering design. However, its theoretical derivation is limited to regular water tanks, employing a concentrated mass overall model to describe the global effect of liquid oscillations. This approach inadequately captures the finely detailed responses of irregularly shaped liquid storage structures, necessitating the development of a distributed additional mass model suitable for simulating oscillations in irregular water bodies.Through potential flow theory, a modal synthesis model is derived, achieving the decoupling of distributed mass and the vibrational acceleration of the liquid storage tank wall. This model effectively disentangles distributed impulse mass and convective mass. Moreover, the vibrational mode analysis of solid grids is applicable to the dynamic analysis of water bodies with arbitrary shapes. The model's accuracy and reliability are verified through comparisons with detailed Computational Fluid Dynamics (CFD) simulations.Finally, utilizing the proposed model, this study investigates the dynamic response patterns of safety tanks with irregular shapes in nuclear power plants at various water levels and sway grid distributions. The applicability of the model in engineering scenarios is demonstrated.

Key words

Fluid-structure coupling / Hydrodynamic distributed quality model / Modal synthesis method / Nuclear power shaped water tank

Cite this article

Download Citations
LI Jianbo1,2,LIU Jia1,2,LI Zhiyuan3,LIN Gao1,2. A study on flow-solid coupling distributed parameter model and utility of non-standard water tanks in nuclear power engineering[J]. Journal of Vibration and Shock, 2024, 43(8): 43-51

References

[1] I Ben Belgacem, Khochtali H, Cheikh L, et al. Comparison Between Two Numerical Methods SPH/FEM and CEL by Numerical Simulation of an Impacting Water Jet[A]//Chaari F, Barkallah M, Bouguecha A, et al. Cham: Springer International Publishing, 2020: 50-60. [2] 孙凯,李博,寇贝贝,等. 基于耦合欧拉-拉格朗日法的井口吸力锚竖向承载力的分析[J]. 工业建筑, 2023, 1-9. SUN Kai, LI Bo, KOU Beibei, et al. Analysis of vertical bearing capacity of wellhead suction anchor based on Coupled Euler-Lagrange Method [J]. Industrial Buildings, 2023, 1-9. [3] 马子远,俞小莉,黄钰期,等. 基于CEL算法的发动机润滑液瞬态振荡过程可视化研究[J]. 振动与冲击, 2018, 37(1): 72-76, 97. MA Ziyuan, YU Xiaoli, HUANG Yuqi, et al. Visualization of transient Oscillation process of engine Lubrication Fluid based on CEL algorithm [J]. Journal of Vibration and Shock, 2018, 37(1): 72-76, 97. [4] G-W Housner. Dynamic pressures on accelerated fluid containers[J]. Bulletin of the Seismological Society of America, 1957, 47(1): 15-35. [5] George-W Housner. The dynamic behavior of water tanks[J]. Bulletin of the Seismological Society of America, 1963, 53(2): 381-387. [6] H-M Westergaard. Water Pressures on Dams during Earthquakes[J]. Transactions of the American Society of Civil Engineers, 1933, 98(2): 418-433. [7] Amir Kolaei, Rakheja Subhash, Richard Marc-J. Three-dimensional dynamic liquid slosh in partially-filled horizontal tanks subject to simultaneous longitudinal and lateral excitations[J]. European Journal of Mechanics - B/Fluids, 2015, 53251-263. [8] 王肖飞,刘俊,叶文斌. 带填充结构圆柱形容器内液体横向晃荡特征研究[J]. 水利与建筑工程学报, 2019, 17(4): 159-164. WANG Xiaofei, LIU Jun, YE Wenbin. Lateral sloshing characteristics of liquid in cylindrical vessel with filling structure [J]. Journal of Water Resources and Architectural Engineering, 2019, 17(4): 159-164. [9] 雷墉,李小军,宋辰宁,等. 核电结构PCS水箱液动压力分析等效模型[J]. 地震工程学报, 2017, 39(5): 890-897, 906. LEI Yong, LI Xiaojun, SONG Chenning, et al. Equivalent model for hydrodynamic pressure analysis of PCS water tank in nuclear power structure [J]. Journal of Earthquake Engineering, 2017, 39(5): 890-897, 906. [10] 黄文,谭添才,马建中. 基于两种模型下的储水罐应力计算[J]. 核动力工程, 2016, 37(2): 127-128. HUANG Wen, TAN Tiancai, MA Jianzhong. Stress calculation of water storage tank based on two models [J]. Nuclear Power Engineering, 2016, 37(2): 127-128. [11] 宝鑫,刘晶波,杨悦,等. 核电工程环形水箱动力分析的附加质量法比较研究[J]. 建筑结构学报, 2018, 39(9): 130-139. BAO Xin, LIU Jingbo, YANG Yue, et al. Comparative study of additional mass method for dynamic analysis of annular water tank in nuclear power engineering [J]. Journal of Building Structures, 2018, 39(9): 130-139. [12] 李小军,宋辰宁,周国良,等. 核岛结构PCS水箱FSI效应简化方法研究[J]. 振动与冲击, 2019, 38(2): 6-12, 32. LI Xiaojun, SONG Chenning, ZHOU Guoliang, et al. A simplified method for FSI effect of PCS Water tank with nuclear island structure [J]. Journal of Vibration and Shock, 2019, 38(2): 6-12, 32. [13] 李建波,杨波,李志远,等. 基于CAS法的核电工程异形水箱分布质量计算模型[J]. 工程力学, 2022, 1-12. LI Jianbo, YANG Bo, LI Zhiyuan, et al. Calculation model of distributed mass of special-shaped water tank in nuclear power engineering based on CAS method [J]. Engineering Mechanics, 2022, 1-12. [14] M Moslemi, Kianoush M-R. Parametric study on dynamic behavior of cylindrical ground-supported tanks[J]. Engineering Structures, 2012, 42214-230. [15] Spyros-A Karamanos, Papaprokopiou Dimitris, Platyrrachos Manolis-A. Finite Element Analysis of Externally-Induced Sloshing in Horizontal-Cylindrical and Axisymmetric Liquid Vessels[J]. Journal of Pressure Vessel Technology, 2009, 131(5). [16] 刘韦宏. 储液罐液体晃荡动力分析与动水压力影响特性研究[D]. 大连理工大学, 2020. Liu Weihong. Dynamic Analysis of Liquid sloshing in liquid storage tank and Study on the influence characteristics of dynamic water pressure [D]. Dalian University of Technology, 2020. [17] 林诚格主编. 非能动安全先进压水堆核电技术 中[M]. 北京:原子能出版社, 2010. Lin Chengge (Ed.). Passive Safety Advanced Pressurized water Reactor Nuclear Power Technology [M]. Beijing: Atomic Energy Press, 2010. [18] 夏祖讽,李韶平,王晓雯,等. 近期核电厂抗震设计输入及AP1000核岛隔震的总体考虑[J]. 南方能源建设, 2017, 4(03): 1-6. XIA Zu yan, LI Shao ping, WANG Xiao Wen, et al. Recent seismic design input for nuclear power plants and general consideration of AP1000 nuclear island isolation [J]. Southern Energy Construction, 2017, 4(03): 1-6. [19] 黄泽福. 基于有限元法带开孔格栅储箱内液体晃动研究[D]. 大连理工大学, 2021. Huang Zefu. Research on Liquid sloshing in a Box with Open grating based on Finite Element Method [D]. Dalian University of Technology, 2021. [20] 李静,陈健云,徐强,等. AP1000核岛厂房考虑重力水箱流体-结构相互作用的地震易损性分析研究[J]. 振动与冲击, 2019, 38(4): 144-150, 174. LI Jing, CHEN Jianyun, XU Qiang, et al. Seismic vulnerability analysis of AP1000 Nuclear Island building considering fluid-Structure interaction of gravity water tank [J]. Journal of Vibration and Shock, 2019, 38(4): 144-150, 174.
PDF(2333 KB)

Accesses

Citation

Detail

Sections
Recommended

/