Seismic performance of the variable hysteresis performance damper and its application in RC bridge bents

DONG Huihui,LI Yanling,HAN Qiang,DU Xiuli

Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (8) : 98-108.

PDF(2921 KB)
PDF(2921 KB)
Journal of Vibration and Shock ›› 2024, Vol. 43 ›› Issue (8) : 98-108.

Seismic performance of the variable hysteresis performance damper and its application in RC bridge bents

  • DONG Huihui,LI Yanling,HAN Qiang,DU Xiuli
Author information +
History +

Abstract

To achieve the purpose of multi-level protection of the main structure and reduce the residual deformation of conventional energy dissipation dampers under strong earthquakes, A novel variable hysteresis performance damper based on shape memory alloy (SMA-VHD) is proposed. This paper elucidates the damper's configuration, variable hysteresis performance, and working mechanism. A refined finite element model of the damper is formulated by leveraging the outcomes of plate specimen tests using SMA. The hysteresis performance study and parametric investigations are based on the verified finite element model. Finally, the multi-level seismic performance of a double-column RC bridge bents with additional variable hysteresis performance damper is studied by dynamic time-history analysis. The results indicate that SMA exhibits a distinctive stress-strain relationship resembling a flag, which shows good self-centering capability. The SMA-VHD actualizes variable hysteresis performance, with the hysteresis response transitioning from rectangular to flag-shaped as the damper deformation increases, accompanied by a prominent multi-level platform. Applying SMA-VHD to RC bridge bents imparts multi-level seismic performance and enhances the structure's seismic performance.

Key words

Variable hysteresis performance damper / Shape memory alloy / RC bridge bents / Self-centering function / Multi-level seismic design

Cite this article

Download Citations
DONG Huihui,LI Yanling,HAN Qiang,DU Xiuli. Seismic performance of the variable hysteresis performance damper and its application in RC bridge bents[J]. Journal of Vibration and Shock, 2024, 43(8): 98-108

References

[1] 《中国公路学报》编辑部.中国桥梁工程学术研究综述•2014[J].中国公路学报, 2014, 27(05): 1-96. Editorial Department of China Journal of Highway and Transport. Review on China's Bridge Engineering Research:2014[J]. China Journal of Highway and Transport, 2014, 27(05): 1-96. [2] 韩强,董慧慧,王利辉等.基于可更换构件的可恢复功能桥梁防震结构研究综述[J].中国公路学报, 2021, 34(09): 215-230. HAN Qiang, DONG Huihui, WANG Lihui, et al. Review of Seismic Resilient Bridge Structures with Replaceable Members[J]. China Journal of Highway and Transport, 2021, 34(09): 215-230. [3] Chen G, Bothe E R, Ger J. Experimental Characterization of Metallic Dampers for Seismic Retrofit of Highway Bridges[J]. Transportation Research Record Journal of the Transportation Research Board, 2001, 1770(1): 124-131. [4] Xiang N, Li J. Seismic Performance of Highway Bridges with Different Transverse Unseating-Prevention Devices[J]. Journal of Bridge Engineering, 2016, 21(9): 04016045. [5] 汪峰,李春清,刘章军等.考虑附加刚度的黏滞阻尼器-斜拉索参数振动模型及控制分析[J].振动与冲击,2020, 39(22): 183-191. WANG Feng, LI Chunging, LIU Zhangiun, et al. Parametric vibration model for a viscous damper-cable system considering the effect of additional stiffness[J]. Journal of Vibration and Shock, 2020. 39(22): 183-191. [6] 张玉平,王浩,邹仲钦等.大跨度三塔悬索桥弹塑性软钢阻尼器减震控制[J].振动与冲击, 2018, 37(23): 226-233. ZHANG Yuping, WANG Hao, ZOU Zhongqin, et al. Aseismic control of a long-span triple-tower suspension bridge with elastic-plastic steel dampers[J]. Journal of Vibration and Shock, 2018, 37(23): 226-233. [7] 石岩,李军,秦洪果,王东升,王军文,孙治国.桥梁双柱式排架墩抗震性能研究进展述评[J].中国公路学报, 2021, 34(02): 134-154. SHI Yan, LI Jun, QIN Hongguo, et al. Review on Seismic Performance of Bridge Double-column Bents[J]. China Civil Engineering Journal , 2021, 34(02): 134-154. [8] 周海俊,何纪元,杨夏等.摩擦阻尼器-拉索系统振动特性试验研究[J].湖南大学学报(自然科学版), 2022, 49(05): 26-33. ZHOU Haijun, HE Jiyuan, YANG Xia, et al. Experimental Study on Vibration Characteristics of Friction-damper-cable System[J]. Journal of Hunan University (Natural Sciences), 2022, 49(05): 26-33. [9] Guo W, Li J, Liang X. Seismic performance of the buckling-restrained brace central buckle for long-span suspension bridges[J]. Earthquake Tsunami, 2018. [10] 郑一峰,钱盛域.粘滞阻尼器与钢阻尼器在桥梁横向震动控制中的应用[J].华南理工大学学报(自然科学版), 2021, 49(12): 89-100. ZHENG Yifeng, QIAN Shengyu. Application of Viscous Dampers and Steel Dampers in Transverse Vibration Control of Bridges[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(12): 89-100. [11] 吕西林,武大洋,周颖.可恢复功能防震结构研究进展[J].建筑结构学报, 2019, 40(02): 1-15. LU Xilin, WU Dayang, ZHOU Ying. State-of-the-art of earthquake resilient structures[J] Journal of Building Structures, 2019, 40(02): 1-15. [12] 周颖,吴浩,顾安琪.地震工程:从抗震、减隔震到可恢复性[[J].工程力学, 2019, 36(06): 1-12. ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: From earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1-12. [13] 邱灿星,杜修力.自复位结构的研究进展和应用现状[J].土木工程学报, 2021, 54(11): 11-26. QIU Canxing, DU Xiuli. A state-of-the-art review on the research and application of self-centering structures[J]. China Civil Engineering Journal, 2021, 54(11): 11-26. [14] 《中国公路学报》编辑部.中国桥梁工程学术研究综述•2021[J].中国公路学报, 2021, 34(02): 1-97. Editorial Department of China Journal of Highway and Transport. Review on China's Bridge Engineering Research:2021[J]. China Journal of Highway and Transport, 2021, 34(02): 1-97. [15] Christopoulos C, Tremblay R, Kim H J, et al. Self-centering Energy Dissipative Bracing System for the Seismic Resistance of Structures: Development and Validation [J]. Journal of Structural Engineering, 2008, 134 (1): 96-107. [16] Shahiditabar A, Moharrami H. Development and experimental verification of self-centered y-shaped braced frame[J]. Structures, 2021, 34: 1312-1325. [17] 刘家旺,邱灿星,杜修力.包含可更换耗能钢板的自复位支撑参数分析[J].北京工业大学学报, 2021, 47(04): 374-382. LIU Jiawang, QIU Canxing, DU Xiuli. Parametric Study of a Self-centering Brace Utilizing Energy Absorbing Steel Plate Clusters[J]. Journal of Beijing University of Technology, 2021, 47(04): 374-382. [18] DONG H, DU X,HAN Q, et al. Performance of an Innovative Self-centering Buckling Restrained Brace for Mitigating Seismic Responses of Bridge Structures with Double-column Piers [J]. Engineering Structures, 2017, 148: 47-62. [19] 徐龙河,武虎.设置自复位耗能支撑的斜拉桥横向抗震性能研究[J].工程力学, 2019, 36(04): 177-187. XU Longhe, WU Hu. Seismic performance study along the transverse direction of cable-stayed bridges with self-centering energy dissipation braces[J]. Engineering Mechanics, 2019, 36(04): 177-187. [20] 周颖,申杰豪,肖意.自复位耗能支撑研究综述与展望[J].建筑结构学报, 2021, 42(10): 1-13. ZHOU Ying, SHEN Jiehao, XIAO Yi. State-of-the-art on self-centering energy dissipative braces[J]. Journal of Building Structures. 2021, 42(10): 1-13. [21] Miller D, Fahnestock L, Eatherton M R. Development and experimental validation of anickel-titanium shape memory alloy self-centering buckling-restrained brace[J]. Engineering Structures, 2012, 40: 288-298. [22] QIU C, Liu J, Du X. Cyclic behavior of SMA slip friction damper[J]. Engineering structures, 2022(250-Jan.1). [23] Zhang Z, Bi K, Hao H, et al. Development of a novel deformation-amplified shape memory alloy-friction damper for mitigating seismic responses of RC frame buildings[J]. Engineering Structures, 2020, 216(11): 110751. [24] DONG H, WEN J, HAN Q, et al. Seismic Performance Assessment of a RC Bridge Retrofitted with SCEBs Under Near-Fault Pulse-Like Ground Motions[J]. Journal of Earthquake Engineering, 2022. 1-23. [25] 中华人民共和国住房和城乡建设部. GB 50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社, 2010. Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB50011-2010, Code for seismic design of buildings[S]. Beijing: China Architecture & Building Press, 2010. [26] 周颖,顾安琪.自复位剪力墙结构四水准抗震设防下基于位移抗震设计方法[J]. 建筑结构学报, 2018, 40(3): 118-126. ZHOU Ying, GU Anqi. Displacement-based seismic design of self-centering shear walls under four-level seismic fortifications[J]. Journal of Building Structures, 2018, 40(3): 118-126. [27] 欧进萍,杨飏.压电-T型变摩擦阻尼器及其性能试验与分析[J].地震工程与工程振动, 2003(04): 171-177. OU Jinping, YANG Yang. Piezoelectric-T shape variable friction damper and its performance tests and analysis[J]. Earthquake Engineering and Engineering Vibration, 2003(04): 171-177. [28] 谢启芳,张毅,魏荣等.木质变摩擦阻尼器滞回性能的试验研究与理论分析[J].土木工程学报, 2020, 53(S2): 123-128+136. XIE Qifang, ZHANG Yi, WEI Rong, et al. Experimental study and theoretical analysis on hysteretic performance of wooden variable friction damper[J]. China Civil Engineering Journal, 2020, 53(S2): 123-128+136. [29] Wang Y, Zeng B, Zhou Z, et al. Shaking table test of a three-story frame with resilient variable friction braces[J]. Journal of Constructional Steel Research, 2022(May): 192. [30] 陈云,陈超,刘涛,蒋欢军.分级屈服型金属阻尼器减震性能分析[J].地震工程与工程振动, 2018, 38(04): 85-92. Chen Yun, Chen Chao, Liu Tao, et al. Analysis of seismic performance of graded yielding metal damper[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(04): 85-92. [31] 禹文华,陈云.新型分级屈服型金属阻尼器的抗震性能[J].海南大学学报(自然科学版), 2022, 40(02): 193-202. YU Wenhua, CHEN Yun. Seismic Behavior of New Graded Yielding Metal Dampers[J]. Natural Science Journal of Hainan University, 2022, 40(02): 193-202. [32] Zareie S, Issa A S, Zabihollah A, et al. Recent Advances in the Applications of Shape Memory Alloys in Civil Infrastructures: A Review[J]. Structures, 2020, 27(7). [33] 杨建楠,黄彬,谷小军,王骏,张亚辉,朱继宏,张卫红.形状记忆合金力学行为与应用综述[J].固体力学学报, 2021, 42(04): 345-375. YANG Jiannan, HUANG Bin, GU Xiaojun, et al. A Review of Shape Memory Alloys: Mechanical Behavior and Application[J]. Chinese Journal of Solid Mechanics, 2021, 42(04): 345-375. [34] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017-2017[S].北京:中国建筑工业出版社, 2017 Ministry of Housing and Urban-Rural Development of the People's Republic of China.GB 50017-2017, Standard for design of steel structures[S]. Beijing: China Architecture & Building Press, 2017. [35] 成大先.机械设计手册[M].第三版.北京:化学工业出版社, 2010: 8-9 CHENG Daxian. Standard Handbook of Machine Design[M]. Third Edition. Beijing: Chemical Industry Press, 2010: 8-9 [36] 古智钧. 附加支撑双柱式摇摆桥墩的抗震性能研究[D].北京工业大学, 2022. GU Zhijun. Study on seismic performance of double-column rocking bridge pier with additional braces[D]. Beijing University of Technology, 2022. [37] Mccormick J, Aburano H, Ikenaga M, et al. Permissible residual deformation levels for building structures considering both safety and human elements[C]// The 14 world Conference on Earthquake Engineering, Beijing, China: Chinese Association of Earthquake Engineering, 2008. [38] Upadhyay A, Pantelides C P. Comparison of the Seismic Retrofit of a Three-Column Bridge Bent with Buckling Restrained Braces and Self Centering Braces[C]//Structures Congress.0:414-423 [39] M. Bhandari, S.D. Bharti, M.K. Shrimali, et al. The numerical study of base isolated buildings under near-field and far-field earthquakes [J]. Journal of Earthquake Engineering, 2018, 22 (6) 989–1007. [40] Jitendra Gudainiyan, Praveen Kumar Gupta. A comparative study on the response of the L-shaped base isolated multi-storey building to near and far field earthquake ground motion [J]. Forces in Mechanics, 2023, 100191. [41] 岳伟勤,师新虎,张来福等.近场地震下简支梁桥搭接长度需求分析[J].世界地震工程, 2023, 39(02):125-137. YUE Weigin, SHI Xinhu, ZHANG Laifu, et al. Demand analysis of supported length of simply supported beam bridge under near-field earthquake[J]. World Earthquake Engineering, 2023, 39(02):125-137. [42] 国家质量监督检验检疫总局和国家标准化管理委员会. GB 18306-2015, 中国地震动参数区划图[S].北京:中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of the People's Republic of China. GB 18306-2015, Seismic ground motion parameters zonation map of China[S]. Beijing: Standards Press of China, 2015. [43] 司炳君,谷明洋,孙治国等.近断层地震动下摇摆-自复位桥墩地震反应分析[J].工程力学, 2017, 34(10): 87-97. SI Bingjun, GU Mingyang, SUN Zhiguo, et al. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions[J]. Engineering Mechanics, 2017, 34(10): 87-97. [44] Sakai J. Analytical investigations of new methods for reducing residual displacements of reinforced concrete bridge columns[J]. Peer, 2004. [45] Uma S R, Pampanin S, Christopoulos C. Development of probabilistic framework for performance-based seismic assessment of structures considering residual deformations[J]. Journal of Earthquake Engineering, 2010, 14(7): 1092-1111.
PDF(2921 KB)

Accesses

Citation

Detail

Sections
Recommended

/