Improved subspace iteration method for the modal sensitivity analysis of structural vibration

CAO Hongfei1, 2, PENG Xi1, 2, YANG Qiuwei1, 2

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (10) : 161-169.

PDF(1183 KB)
PDF(1183 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (10) : 161-169.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Improved subspace iteration method for the modal sensitivity analysis of structural vibration

  • CAO Hongfei1,2,PENG Xi*1,2,YANG Qiuwei1,2
Author information +
History +

Abstract

Sensitivity analysis of structural vibration modes (eigenvalues and eigenvectors) is widely used in structural vibration control, optimal design and damage identification. At present, the main modal sensitivity algorithms are modal superposition method, Nelson’s method and their improved algorithms. When these algorithms are applied to modal sensitivity analysis of large-scale engineering structures, there is generally a defect of low computational efficiency. In order to save the calculation cost, this paper proposes an improved subspace iteration method of modal sensitivity based on approximate flexibility. Firstly, the calculation problem of modal sensitivity is transformed into the calculation problem of modal eigen-pairs after minor modification of the structure by difference operation. Then, an approximate flexibility calculation formula is proposed to quickly estimate the inverse of the modified stiffness matrix of the structure, which is applied to the subspace iteration process to quickly obtain the modal eigen-pairs after minor modification, and accordingly the corresponding modal sensitivity can be quickly calculated. Two structural models are taken as examples to verify the proposed method. The results show that the calculation accuracy of the proposed method is basically consistent with the existing modal sensitivity algorithm, but the calculation time is greatly reduced. The proposed method is more suitable for vibration modal sensitivity analysis of large-scale engineering structures than the existing methods.

Key words

Vibration mode / Sensitivity analysis / Subspace iteration method / Approximate flexibility / Computational efficiency

Cite this article

Download Citations
CAO Hongfei1, 2, PENG Xi1, 2, YANG Qiuwei1, 2. Improved subspace iteration method for the modal sensitivity analysis of structural vibration[J]. Journal of Vibration and Shock, 2025, 44(10): 161-169

References

[1] 王刚锋,王万汀,索雪峰,等.矿用自卸车液压互联悬架参数灵敏度分析与优化[J].振动与冲击,2024,43(19):232-241.
WANG Gangfeng, WANG Wanting, SUO Xuefeng, et al. Sensitivity analysis and optimization of hydraulically interconnected suspensionparameters of mining dump trucks[J]. Journal of Vibration and Shock, 2024, 43(19): 232-241.
[2] Li S, Feng X. Study of structural optimization design on a certain vehicle body-in-white based on static performance and modal analysis[J]. Mechanical Systems and Signal Processing, 2020, 135: 106405. 
[3] Wu D, Law S S. Model error correction from truncated modal flexibility sensitivity and generic parameters: Part I-simulation[J]. Mechanical Systems and Signal Processing, 2004, 18(6): 1381-1399.
[4] 刘乐天,李凡松,宋烨,等.基于灵敏度分析的转向架构架有限元模型修正[J].振动与冲击,2023,42(03):181-186.
LIU Letian, LI Fansong, SONG Ye, et al. Finite element model updating of bogie frame based on sensitivity analysis[J]. Journal of Vibration and Shock, 2023, 42(3): 181-186.
[5] Xu Y F, Huang G L. Modal sensitivity analysis of acoustic metamaterials for structural damage detection[J]. International Journal of Mechanical Sciences, 2023, 259: 108571.
[6] 郭帅平,吴琪强,李学军,等.基于模态参数的梁结构多裂纹定位与程度识别[J].振动与冲击,2020,39(23):271-278+286.
GUO Shuaiping, WU Qiqiang, LI Xuejun, et al. Multi-crack location and degree identification of beam structure based on modal parameters[J]. Journal of Vibration and Shock, 2020, 39(23): 271-279
[7] Huang C, Wang L, Liu T, et al. Reconstruction of eigenstrains and residual stresses in thin plates from modal sensitivity analysis[J]. Nondestructive Testing and Evaluation, 2023: 1-21.
[8] Castillo E, Mínguez R, Castillo C. Sensitivity analysis in optimization and reliability problems[J]. Reliability Engineering & System Safety, 2008, 93(12): 1788-1800.
[9] Fox R L, Kapoor M P. Rates of change of eigenvalues and eigenvectors[J]. AIAA journal, 1968, 6(12): 2426-2429.
[10] Lim K B, Junkins J L, Wang B P. Re-examination of eigenvector derivatives[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(6): 581-587.
[11] Balmes E. Efficient sensitivity analysis based on finite element model reduction. Proceedings of 16th International Modal Analysis Conference, Santa Barbara, USA, 1998.
[12] Zeng Q H. Highly accurate modal method for calculating eigenvector derivatives in viscous damping systems[J]. AIAA Journal, 1995, 33(4):746-751.
[13] Adhikari S. Derivative of eigensolutions of nonviscously damped linear systems[J]. AIAA journal, 2002, 40(10): 2061-2069.
[14] Adhikari S. Calculation of derivative of complex modes using classical normal modes[J]. Computers & Structures, 2000, 77(6): 625-633.
[15] Van Der Aa N P, Ter Morsche H G, Mattheij R R M. Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem. Electronic Journal of Linear Algebra, 2007, 16(1): 26.
[16] Nelson R B. Simplified calculation of eigenvector derivatives[J]. AIAA journal, 1976, 14(9): 1201-1205.
[17] Lin R M, Lim M K. Structural sensitivity analysis via reduced-order analytical model[J]. Computer Methods in Applied Mechanics & Engineering, 1995, 121(1-4):345-359.
[18] Lin R M, Wang Z, Lim M K. A practical algorithm for the efficient computation of eigenvector sensitivities[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 130(3-4):355-367.
[19] Adhikari S, Friswell M I. Calculation of eigensolution derivatives for nonviscously damped systems[J]. AIAA Journal, 2006, 44(8):1799-1806.
[20] Wu B, Xu Z, Li Z. Improved Nelson's Method for computing eigenvector derivatives with distinct and repeated eigenvalues[J]. AIAA Journal, 2007, 45(4):950-952. 
[21] Guedria N, Chouchane M, Smaoui H. Second-order eigensensitivity analysis of asymmetric damped systems using Nelson's method[J]. Journal of Sound and Vibration, 2007, 300(3-5): 974-992.
[22] Wang P, Dai H. Calculation of eigenpair derivatives for asymmetric damped systems with distinct and repeated eigenvalues[J]. International Journal for Numerical Methods in Engineering, 2015, 103(7):501-515.
[23] Wang P, Dai H. Eigensensitivity of symmetric damped systems with repeated eigenvalues by generalized inverse[J]. Journal of Engineering Mathematics, 2016, 96: 201-210.
[24] Ruiz D, Bellido J C, Donoso A. Eigenvector sensitivity when tracking modes with repeated eigenvalues[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 338-357.
[25] Lin R M, Ng T Y. Eigenvalue and eigenvector derivatives of fractional vibration systems[J]. Mechanical Systems and Signal Processing, 2019, 127: 423-440.
[26] Yang Q, Peng X. An exact method for calculating the eigenvector sensitivities[J]. Applied Sciences, 2020, 10(7): 2577.
[27] 李成立,王彤.计算重根特征向量灵敏度的正则完备法[J].机械制造与自动化,2024,53(03):123-126+145.
LI Chengli,WANG Tong.Regular complete method for computing sensitivity of repeated root eigenvectors[J].Machine Building & Automation,2024,53(3):123-126.
[28] 隋广宇,李正光,吴柏生.阻尼结构重频特征灵敏度计算的扩展Nelson方法[J].吉林大学学报(理学版),2021,59(05):1124-1130.
SUI Guangyu,LI Zhengguang,WU Baisheng.Extended Nelson’s method for calculating eigensensitivityof damped structures with repeated frequencies[J].Journal of Jilin University(Science Edition),2021,59(5):1124-1130.
[29] 胡德昌,孙永鑫,蔡伟,等.转子结构重频特征灵敏度计算的一种新方法[J/OL].计算力学学报,1-9[2024-09-27].http://kns.cnki.net/kcms/detail/21.1373.O3.20240418.1851.042.html.
[30] Lee IW, Jung GH. An efficient algebraic method for the computation of natural frequency and mode shape sensitivities—part I. Distinct natural frequencies. Computers & Structures. 1997, 62(3):429-35.
[31] Lee IW, Jung GH. An efficient algebraic method for the computation of natural frequency and mode shape sensitivities—Part II. Multiple natural frequencies. Computers & structures. 1997, 62(3):437-43.
[32] 张淼,于澜,鞠伟.实模态参数的二阶灵敏度算法与对比分析[J].计算力学学报,2020,37(04):511-516.
 ZHANG Miao, YU Lan, JU Wei. The second-order sensitivity algorithm and their comparison analysis for real modal parameters[J]. Chinese Journal of Computational Mechanics,2020, 37(4): 511-516. 
[33] 张淼,于澜,鞠伟.实模态灵敏度分析的2种模态算法及其应用[J].合肥工业大学学报(自然科学版),2022,45(04):451-457.
[34] Zhang O, Zerva A. Iterative method for calculating derivatives of eigenvectors[J]. AIAA journal, 1996, 34(5): 1088-1090.
[35] Zhang O, Zerva A. Accelerated iterative procedure for calculating eigenvector derivatives[J]. AIAA journal, 1997, 35(2): 340-348.
[36] Wu B, Yang S, Li Z, Zheng S. A preconditioned conjugate gradient method for computing eigenvector derivatives with distinct and repeated eigenvalues. Mechanical Systems and Signal Processing. 2015, 50:249-59.
[37] Li Z, Wu B, Zhong H. Iterative computation of eigenvector derivatives for middle eigenvalues. AIAA Journal. 2016, 54(11):3580-7.
[38] 陈锦洪,钟慧湘,吴柏生.中间特征向量灵敏度的自适应迭代计算[J].吉林大学学报(理学版),2023,61(01):148-153.
CHEN Jinhong, ZHONG Huixiang, WU Baisheng. Adaptive iterative calculation of sensitivity of mid-eigenvectors[J]. Journal of Jilin University Science Edition, 2023, 61(1): 148-153.
[39] Chopra, A. K. Dynamics of Structures. Prentice Hall: NJ, 2001.
PDF(1183 KB)

Accesses

Citation

Detail

Sections
Recommended

/