Vibration response analysis of a cementing casing string system considering the effects of fluid and centralizer

WANG Liyan1, YIN Yiyong1, QI Linshan1, YU Yongjin2, XIA Xiujian2, HU Yuannong2, LIU Weixiong1

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (10) : 180-190.

PDF(2566 KB)
PDF(2566 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (10) : 180-190.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Vibration response analysis of a cementing casing string system considering the effects of fluid and centralizer

  • WANG Liyan1,YIN Yiyong*1,QI Linshan1,YU Yongjin2,XIA Xiujian2,HU Yuannong2,LIU Weixiong1
Author information +
History +

Abstract

Due to the complex downhole environment, the cementing casing system’s response under vibration conditions is very complicated. To reveal the dynamic behavior of the cementing casing system, considering factors such as fluid and centralizer, a dynamic model of the cementing casing system was established firstly. And the vibration characteristics and vibration displacement response of the system were solved by using the separation variable and modal superposition method. On this basis, the correctness of the model was verified by modal tests and vibration response tests. Finally, the influence mechanism of casing string parameters, fluid parameters, and centralizer stiffness on the vibration characteristics and vibration displacement response of the system was studied, and the propagation law of vibration on the casing string was analyzed. The results indicate that the fluid density and casing material parameters have a significant impact on the vibration characteristics. The size parameters of the casing string, damping ratio, and stiffness of the stabilizer have a significant impact on the vibration characteristics and displacement response of the system. On the premise of meeting the requirements of cementing technology, selecting small-diameter thin-walled casing, cement slurry with low viscosity coefficient, and low stiffness stabilizer will be beneficial for improving the amplitude of vibration displacement response. During the cementing operation, the selection of excitation frequency should comprehensively consider the amplitude and distribution of vibration response. The study provides theoretical basis for accurately solving the vibration characteristics of the cementing casing system and the design of vibration cementing equipment parameters.

Key words

cementing casing string / separation of variables / modal superposition / natural frequency / vibration response

Cite this article

Download Citations
WANG Liyan1, YIN Yiyong1, QI Linshan1, YU Yongjin2, XIA Xiujian2, HU Yuannong2, LIU Weixiong1. Vibration response analysis of a cementing casing string system considering the effects of fluid and centralizer[J]. Journal of Vibration and Shock, 2025, 44(10): 180-190

References

[1] 温志新, 王建君, 王兆明, 等. 世界深水油气勘探形势分析与思考[J]. 石油勘探与开发, 2023, 50(05): 924-936. 
WEN Zhixin, WANG Jianjun, WANG Zhaoming, et al. Analysis of the world deepwater oil and gas exploration situation[J]. Petroleum Exploration and Development, 2023, 50(5): 924-936. 
[2] 刘岩生, 张佳伟, 黄洪春. 中国深层—超深层钻完井关键技术及发展方向[J]. 石油学报, 2024, 45(01): 312-324. 
LIU Yansheng, ZHANG Jiawei, HUANG Hongchun. Key technologies and development direction for deep and ultra-deep driling and completion in China[J]. Acta Petrolei Sinica, 2024, 45(1): 312-324. 
[3] 贾承造. 中国石油工业上游前景与未来理论技术五大挑战[J]. 石油学报, 2024, 45(01): 1-14. 
JIA Chengzao. Prospects and five future theoretical and technical challenges of the upstream petroleum industry in China[J]. Acta Petrolei Sinica, 2024, 45(1): 1-14. 
[4] 王雪瑞, 孙宝江, 王志远, 等. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法[J]. 中国石油大学学报(自然科学版), 2022, 46(02): 103-112. 
WANC Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 103-112. 
[5] 闫振峰, 魏凯, 翟晓鹏, 等. 基于二维螺旋周向涡流的破碎性油气层固井新技术[J]. 天然气工业, 2023, 43(05): 71-77. 
YAN Zhenfeng, WEI Kai, ZHAI Xiaopeng, et al. A new cementing technology based on two-dimensional spiral circumferential vortex for fragile oil and gas layers[J]. Natural Gas Industry, 2023, 43(5): 71-77. 
[6] 丁士东, 廖华林, 李根生, 等. 井口脉冲压力在环空中传播规律分析[J]. 天然气工业, 2007(02): 57-59+152-153. 
DING Shidong, LIAO Hualin, LI Gensheng, et al. Analysis of wellhead pulse pressure propagation law in ring air[J]. Natural Gas Industry, 2007(02): 57-59+152-153. 
[7] CHIMMALGI V S, WOJTANOWICZ A K. Design of cement pulsation treatment in gas wells-model and field validation[J]. Journal of Canadian Petroleum Technology, 2005, 44(6): 36-45. 
[8] 练章华, 李文魁, 陈小榆. 顶部水泥脉冲振动的数学模型[J]. 石油学报, 2001(01): 83-88+2. 
LIAN Zhanghua, LI Wenkui, CHEN Xiaoyu. Mathematical model of pulse vibration of top cement[J]. Acta Petrolei Sinica, 2001(01): 83-88+2. 
[9] 郑章义, 夏宏南, 杨明合, 等. 套管在水力脉冲式振动固井中横向振动模型的建立与求解[J]. 长江大学学报(自然科学版), 2011, 8(03): 50-51. 
ZHENG Zhangyi, XIA Hongnan, YANG Minghe, et al. Establish and solute the transverse vibration model of casing in hydraulic pulse vibration cementing[J]. Journal of Yangtze University (Natural Science Edition), 2011, 8(03): 50-51. 
[10] 任锐, 姬丽臻, 高德利, 等. 套管-水泥浆系统流固耦合振动特性研究[J]. 应用力学学报, 2017, 34(04): 610-614+809. 
REN Rui, JI Lizhen, GAO Deli, et al. Study on fluid-structure interaction vibration characteristics of casing-cement slurry system[J]. Chinese Journal of Applied Mechanics, 2017, 34(04): 610-614+809. 
[11] 王友文, 袁进平, 王兆会, 等. 固井套管柱系统在钻井液-水泥浆耦合系统中振动特性的数值模拟[J]. 西安石油大学学报(自然科学版), 2019, 34(03): 88-93. 
WANG Youwen, YUAN Jinping, WANG Zhaohui, et al. Numerical simulation of vibration characteristics of casing string in drilling fluid-cement slurry coupling system[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(03): 88-93.
[12] ZHANG X B, YANG Q Z, XU F Y, et al. Field Test of Vibration Wave Attenuation Coefficient Model in Casing Medium[J]. Journal of Physics: Conference Series, 2021, 1894(1). 
[13] 尹宜勇, 白翰钦, 曲从锋, 等. 基于动力学缩比和传递矩阵法的水平井基频求解方法[J]. 中国石油大学学报(自然科学版), 2022, 46(03): 158-165. 
YIN Yiyong, BAI Hanqin, QU Congfeng, et al. Method of solving fundamental frequency of horizontal wells based on dynamic scaling and transfer matrix methods[J]. Journal of China University of Petroleum (Natural Science Edition), 2022, 46(03): 158-165. 
[14] 齐林山, 尹宜勇, 曲从锋, 等. 页岩气水平井振动固井套管柱系统振动特性研究[J]. 振动与冲击, 2024, 43(09): 149-157+194. 
QI Linshan, YIN Yiyong, QU Congfeng, et al. Vibration characteristics of shale gas horizontal well vibration cementing casing string[J]. Journal of Vibration and Shock, 2024, 43(09): 149-157+194. 
[15] GAO P X, ZHANG Y L, LIU X F, et al. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method[J]. Journal of Mechanical Science and Technology, 2020, 34(8): 3137-3146. 
[16] GUO X M, MA H, GE H, CHEN S, et al. Vibration transmission characteristics analysis of a flexible casing-multiple pipes system[J]. Mechanical Systems and Signal Processing, 2024, 217: 111536.
[17] 金国庆, 邹丽, 宗智, 等. 深海采矿系统中悬臂式立管涡激振动分析[J]. 力学学报, 2022, 54(06): 1741-1754. 
JIN Guoqing, ZOU Li, ZONG Zhi, et al. Analysis of vortex-induced vibration for a cantilever riser in a deep-sea mining system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1741-1754
[18] 吴江海, 苏明珠, 尹志勇, 等. 复合材料充液管路流固耦合特性分析[J]. 振动与冲击, 2023, 42(07): 99-105. 
WU Jianghai, SU Mingzhu, YIN Zhiyong, et al. Fluid-structure interaction characteristics analysis of composite liquid-filled pipeline[J]. Journal of Vibration and Shock, 2023, 42(07): 99-105. 
[19] 曹银行, 柳贡民, 胡志. 传递矩阵法在计算输流管路高频振动时的稳定性改进[J]. 振动与冲击, 2024, 43(02): 138-145. 
CAO Yinhang, LIU Gongmin, HU Zhi. Stability improvement of the transfer matrix method when calculating the high requency vibration of a pipeline conveying fluid[J]. Journal of Vibration and Shock, 2024, 43(02): 138-145. 
[20] ZHOU K, NI Q, CHEN W, et al. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 703-720. 
[21] DENG T C, DING H, CHEN L Q. Critical velocity and supercritical natural frequencies of fluid-conveying pipes with retaining clips[J]. International Journal of Mechanical Sciences, 2022, 222: 107254. 
[22] ZHANG Y, SUN W, MA H W, et al. Semi-analytical modeling and vibration analysis for U-shaped, Z-shaped and regular spatial pipelines supported by multiple clamps [J]. European Journal of Mechanics/A Solids, 2023, 97: 104797. 
[23] 庞福振, 郑嘉俊, 高聪, 等. 圆柱壳振动声辐射Jacobi-Ritz时域半解析法及特性分析[J]. 国防科技大学学报, 2023, 45(04): 136-146. 
PANG Fuzhen, ZHENG Jiajun, GAO Cong, et al. Jacobi-Ritz time domain semi-analytic method and characteristic analysis of cylindrical shell vibro-acoustic radiation[J]. Journal of National University of Defense Technology, 2023, 45(04): 136-146. 
[24] 尹宜勇, 苏义脑, 王兆会. 电力振动器激振作用下的套管串振动特性[J]. 天然气工业, 2017, 37(05): 62-67. 
YIN Yiyong, SU Yinao, WANG Zhaohui. Vibration characteristics of casing string under the exciting force of an electric vibrator[J]. Natural Gas Industry, 2017, 37(05): 62-67. 
[25] MOTOHIRO S, SHUNJI K, TAKASHI M. Mathematical analogy of a beam on elastic supports as a beam on elastic foundation[J]. Applied Mathematical Modelling, 2008, 32(5): 688-699. 
[26] 吴天新, 陆鑫森. 钻柱外钻井液对钻柱横向振动的影响[J]. 石油机械, 1995, (01): 40-43+62. 
WU Tianxin, LU Xinsen. Influence of drill fluid outside drillstring on lateral vibration of drillstring. China Petroleum Machinery, 1995, (01): 40-43+62. 
[27] 潘谊党, 于培志. 密度对油基钻井液性能的影响[J]. 钻井液与完井液, 2019, 36(03): 273-279. 
PAN Yidang, YU Peizhi. Effect of density on the performance of oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36 (3): 273-279. 
[28] 尹宜勇,刘硕琼,王兆会.振动固井电力振动器激振力和振幅分析[J].石油钻采工艺,2016,38(03):327-330.
YIN Yinyong, LIU Shuoqiong, WANG Zhaohui. Exciting force and amplitude of electric vibrator used in vibration cementing[J]. Oil Drilling & Production Technology, 2016, 38 (03): 327-330.
PDF(2566 KB)

46

Accesses

0

Citation

Detail

Sections
Recommended

/