Dynamic mechanical response characteristics and damage evolution mechanism of limestone under cyclic loading#br#

#br#

LEI Xiaolei, WANG Haibo, DUAN Jichao, WANG Mengxiang, L Nao

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (10) : 30-40.

PDF(2392 KB)
PDF(2392 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (10) : 30-40.
SHOCK AND EXPLOSION

Dynamic mechanical response characteristics and damage evolution mechanism of limestone under cyclic loading#br#

#br#

  • LEI Xiaolei,WANG Haibo,DUAN Jichao*,WANG Mengxiang,L Nao
Author information +
History +

Abstract

To investigate the mechanical properties and damage evolution mechanisms of limestone under cyclic loading, a series of laboratory experiments, theoretical analyses, and numerical simulations were conducted. Initially, single and constant-amplitude cyclic impact tests on limestone were performed using the Split Hopkinson Pressure Bar (SHPB) apparatus. Based on the Weibull damage theory, a dynamic load-induced damage evolution model was developed. Additionally, numerical simulations of cyclic blasting on limestone were carried out using ANSYS/LSDYNA. The results indicate that, under a single impact, an increase in impact pressure leads to an elevation in peak stress and yield strain of the limestone. Under cyclic impacts, as the impact pressure rises from 0.15 MPa to 0.30 MPa, the number of impacts required to fracture the specimens decreases gradually, from 13 to 3. With an increasing number of impacts, the yield strain of the specimens increases, while the elastic modulus and peak stress decrease, ultimately leading to failure when the cumulative damage approaches unity. As the number of blasting events increases, the crushing zone around the blast holes in the model expands, the main cracks continue to propagate, and damage accumulates. The damage variable defined in this study achieves a comprehensive and unified description of the entire process of cumulative damage evolution under cyclic impact loading. The rock damage expression established under blasting loads effectively reveals the distribution characteristics of rock damage during a single blasting event, aligning with the theoretical framework of engineering blasting and providing valuable insights for engineering blasting operations.

Key words

SHPB test / cyclic impact / numerical simulation / cyclic bursting / cumulative damage

Cite this article

Download Citations
LEI Xiaolei, WANG Haibo, DUAN Jichao, WANG Mengxiang, L Nao. Dynamic mechanical response characteristics and damage evolution mechanism of limestone under cyclic loading#br#
#br#
[J]. Journal of Vibration and Shock, 2025, 44(10): 30-40

References

[1] MARILENA C, JACOPO S. Quantifying the difficulty of tunnelling by drilling and blasting. Tunnelling and Underground Space Technology. 2016, 60: 178-182.
[2] CHANDRAKAR S,  PAUL P S, SAWMLIANA C. Influence of void ratio on “Blast Pull” for different confinement factors of development headings in underground metalliferous mines. Tunnelling and Underground Space Technology. 2021, 108: 103716.
[3] WU H. J, GONG M, CAO Z Y, et al. In-situ high-speed 3D-DIC experiment on blast-induced second free surface characteristics at initial stage of cut blasting in a tunnel. Tunnelling and Underground Space Technology. 2023, 142: 105392.
[4] RAMULU M, CHAKRABORTY A K, SITHARAM T G. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project-A case study [J]. Tunnelling and Underground Space Technology, 2009, 24(2): 208-221.
[5] LI H B, XIA X, LI J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210-218. 
[6] 张波.大断面隧道台阶法爆破开挖围岩损伤特征研究[J]. 爆破, 2023, 40(1): 69-76.
ZHANG Bo. Damage Characteristics of Surrounding Rock for Large-section Tunnel Excavated by Bench Blasting[J]. Blasting, 2023, 40(1): 69-76.
[7] 宋肖龙, 高文学, 季金铭, 等.爆破振动对隧道围岩累积损伤效应的影响[J].振动与冲击, 2020, 39(24): 54-62.
SONG Xiaolong, GAO Wenxue, JI Jin-ming, et al. Influence of blasting vibration on cumulative damage of surrounding rock[J]. Journal of Vibration and Shock, 2020, 39(24): 54-62.
[8] 张艳博, 张恩源, 姚旭龙, 等.考虑矿物细观结构的岩石数字化模型构建及其应用[J].岩石力学与工程学报, 2021, 40(S2): 3212-3226.
ZHANG Yanbo, ZHANG Enyuan, YAO Xulong, et al. Construction and application of rock digital model considering mineralmeso-structure[J].Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3212-3226.
[9] 夏开文, 王帅, 徐颖, 等.深部岩石动力学实验研究进展[J].岩石力学与工程学报, 2021, 40(3): 448-475.
XIA Kaiwen, WANG Shuai, XU Ying, et al. Advances in experimental studies for deep rock dynamics[J].Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 448-475.
[10] 王浩, 宗琦, 汪海波, 等.冲击荷载下饱水凝灰岩断裂韧性及裂纹扩展分形特征研究[J].岩石力学与工程学报, 2023, 42(7):1709–1719.
WANG Hao, ZONG Qi, WANG Haibo, et al. Fractal characteristics of fracture toughness and crack propagation of saturated tuff under impact loads[J].Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1709–1719.
[11] 李夕兵, 周子龙, 叶州元, 等.岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, (7): 1387-1395.
LI Xibing, ZHOU Zilong, YE Zhou-yuan, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, (7): 1387-1395.
[12] 刘晓辉, 张茹, 刘建锋.不同应变率下煤岩冲击动力试验研究[J]. 煤炭学报, 2012, 37(9): 1528-1534.
LIU Xiaohui, ZHANG Ru, LIU Jianfeng. Dynamic test study of coal rock under different strain rates[J]. Journal of China Coal Society, 2012, 37(9): 1528-1534.
[13] 王梦想, 汪海波, 宗琦.冲击荷载作用下煤矿泥岩能量耗散试验研究[J]. 煤炭学报, 2019, 44(6): 1716-1725.
WANG Mengxiang, WANG Haibo, ZONG Qi. Experimental study on energy dissipation of mudstone in coal mine under impact loading[J]. Journal of China Coal Society, 2019, 44(6): 1716-1725.
[14] Gao R, Wang HZ, Cao RH. et al. Damage deterioration mechanism and damage constitutive modelling of marble after cyclic impact loading. Journal of Materials Research and Technology,2024, 29: 1293-1304.
[15] 金解放, 李夕兵, 常军然, 等.循环冲击作用下岩石应力应变曲线及应力波特性[J]. 爆炸与冲击, 2013, 33(6): 613-619.
JIN Jiefang, LI Xibing, CHANG Jun-ran, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings[J]. Explosion and Shock Waves, 2013, 33(6): 613-619.
[16] 余永强, 张文龙, 范利丹, 等. 冲击荷载下煤系砂岩应变率效应及能量耗散特征[J]. 煤炭学报, 2021, 46(7): 2281-2293. 
YU Yongqiang, ZHANG Wwenlong, FAN Lidan, et al. Study on strain rate effect and energy dissipation characteristics of coal measures sandstone under impact loading [J]. Journal of China Coal Society, 2021, 46(7): 2281-2293. 
[17] 曹峰, 凌同华, 李洁, 等.循环爆破荷载作用下小净距隧道中夹岩的累积损伤特征分析[J].振动与冲击, 2018, 37(23): 141-148.
CAO Feng, LING Tonghua, LI Jie, et al. Cumulative damage feature analysis for shared rock in aneighborhood tunnel under cyclic explosion loading[J].Journal of Vibration and Shock, 2018, 37(23): 141-148.
[18] HU Y, LU W, et al. Comparison of Blast-Induced Damage Between Presplit and Smooth Blasting of High Rock Slope[J]. Rock Mechanics and Rock Engineering, 2014, 47 (4): 1307-1320.
[19] NI Y, WANG Z, et al. Numerical study on the dynamic fragmentation of rock under cyclic blasting and different in-situ stresses. Computers and Geotechnics, 2024, 172: 106404.
[20] 田诺成.循环荷载作用下花岗岩动力学性能与累积损伤演化规律研究[D].合肥工业大学, 2021.
[21] 贾宝新, 陈国栋, 刘丰溥. 高温下岩石损伤本构模型及其验证[J]. 岩土力学, 2022, 43 (S2): 63-73.
JIA Baoxin, CHEN Guodong, LIU Fengpu. Damage modeling of rocks at high temperatures and its validation[J]. Geotechnics, 2022, 43 (S2): 63-73.
[22] 樊赖宇, 吴志军, 储昭飞, 等.动态冲击下红砂岩蠕变特性及损伤本构模型[J].岩土力学, 2024, 45(6): 1608-1622.
FAN Laiyu, WU Zhijun, CHU Zhaofei, et al. Creep characteristics and damage constitutive model of red sandstone under dynamic disturbance[J]. Geotechnics, 2024, 45(6): 1608-1622.
[23] 王凯, 左晓欢, 杜锋, 等.循环载荷作用下煤岩复合结构宏-细观破坏特征及能量‒损伤本构模型[J].煤炭学报, 2024, 49(02): 767-784.
WANG Kai, ZUO Xiaohuan, DU Feng, et al. Macro-mesoscopic perspective damage characteristies and energy-damage con-
stitutive model of coal-rock composite structures subjected to cyclie loading[J]. Journal of China Coal Society, 2024, 49(02): 767-784.
[24] 曹文贵, 赵明华, 刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报, 2004, (19): 3226-3231.
CAO Wengui, ZHAO Minghua, LIU Chengxue. Study on the model and its modifying method forrock softening and damage based on weibullrandom distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2004,(19): 3226-3231.
[25] CAO R, FANG L, QIU x. et al. Damage deterioration mechanism and damage constitutive modelling of red sandstone under cyclic thermal-cooling treatments. Archives of Civil and Mechanical Engineering, 2022, 22 (4): 188.
[26] 朱晶晶, 李夕兵, 宫凤强, 等.单轴循环冲击下岩石的动力学特性及其损伤模型研究[J]. 岩土工程学报, 2013, 35(3): 531-539.
ZHU Jingjing, LI Xibing, GONG Fengqiang, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531-539.
[27] 王宇, 翟成, 唐伟, 等.循环冲击载荷作用下页岩动力学响应及能量耗散特征[J]. 爆炸与冲击, 2023, 43(06): 76-89.
WANG Yu, ZHAI Cheng, TANG Wei, et al. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings[J]. Explosion and Shock Waves, 2023, 43(6): 76-89.
[28] 曹文贵, 李 翔.岩石损伤软化统计本构模型及参数确定方法的新探讨[J].岩土力学, 2008, 155(11): 2952-2956.
CAO Wengui, LI Xiang. A new discussion on damage softening statistical constitutive model for rocks and method for determining its parameters[J]. Rock and Soil Mechanics, 2008, 155(11): 2952-2956.
[29] 金解放, 李夕兵, 常军然, 等.循环冲击作用下岩石应力应变曲线及应力波特性[J]. 爆炸与冲击, 2013, 33(6): 613-619.
JIN Jiefang, LI Xibing, CHANG Jun-ran, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings[J]. Explosion and Shock Waves, 2013, 33(6): 613-619.
[30] 段继超, 宗琦, 汪海波, 等.起爆顺序对露天台阶爆破效果影响的数值模拟及现场试验[J].中国安全生产科学技术, 2023, 19(5): 109-116. 
DUAN Jichao, ZONG Qi, WANG Haibo, et al. Numerical simulation and field test on influence of blasting sequence on open-pit bench blasting effect[J]. Journal of Safety Science and Technology, 2023, 19(5): 109-116. 
[31] 李洪超, 陈勇, 刘殿书, 等. 岩石RHT模型主要参数敏感性及确定方法研究[J]. 北京理工大学学报, 2018, 38( 8) : 779-785.
LI Hongchao, CHEN Yong, LIU Dianshu, et al. Study on sensitivity and determination of main parameters of rock RHT model[J]. Journal of Beijing Institute of Technology, 2018, 38(8): 779-785.
[32] HOLMQUIST T J. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]. Proceedings of the 14th International Symposium on Ballistics, 1993:591-600. 
[33] 李允忠, 王志亮, 黄佑鹏, 等.循环爆破载荷下岩石累积损伤效应研究[J].爆破, 2019, 36(2): 47-53.
LI Yunzhong, WANG Zhiliang, HUANG Yupeng, et al. Numerical Study of Cumulative Damage Effect ofRock under Cyclic Blast Loading[J]. Blasting, 2019, 36(2):47-53.
[34] WANG Z L, WANG H C, TIAN J G, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks. Computers and Geotechnics, 2021, 135: 104172.
PDF(2392 KB)

Accesses

Citation

Detail

Sections
Recommended

/