Research progress on active vibration control methods via the Stewart isolation platform

YANG Xian’e, LIU Xueguang

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (10) : 323-338.

PDF(1486 KB)
PDF(1486 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (10) : 323-338.

Research progress on active vibration control methods via the Stewart isolation platform

  • YANG Xian’e, LIU Xueguang*
Author information +
History +

Abstract

Precision optical instruments in aircraft and ships face increasingly stringent requirements for the vibration environment, and active control methods via the Stewart platform have attracted extensive attention. Firstly, the development of Stewart active vibration isolation platform at home and abroad was investigated, and the main performance indicators such as payload (Kg), active bandwidth (Hz) and maximum amplitude attenuation (dB) were summarized. Secondly, the key technologies on Stewart active vibration isolation platform, including Stewart platform configuration, isotropic and dynamic stability, coupling factors and decoupling methods, dynamic modeling methods, nonlinear and hysteresis phenomena of smart material actuators, and active control algorithms, were summarized in detail. The study discussed how the main performance indicators were enhanced by these key technologies and identified unresolved issues; then, the advantages of multi-channel coupled adaptive algorithm using Stewart isolation platform in complex and time-varying vibration environment were summarized. Finally, the further development of Stewart active vibration isolation platforms in precision optical instruments was prospected. 

Key words

Stewart platform / precision optical equipment / active vibration isolation / multi-freedom / multi-channel coupled adaptive algorithm

Cite this article

Download Citations
YANG Xian’e, LIU Xueguang. Research progress on active vibration control methods via the Stewart isolation platform[J]. Journal of Vibration and Shock, 2025, 44(10): 323-338

References

[1] LI L, WANG L, YUAN L, et al. Micro-vibration suppression methods and key technologies for high-precision space optical instruments[J]. Acta Astronautica, 2021, 180: 417–428.
[2] LI L, TAN L Y, KONG L, et al. The influence of flywheel micro vibration on space camera and vibration suppression[J]. Mechanical Systems and Signal Processing, 2018, 100: 360–370.
[3] ULGEN D, ERTUGRUL O L, OZKAN M Y. Measurement of ground borne vibrations for foundation design and vibration isolation of a high-precision instrument[J]. Measurement, 2016, 93: 385–396.
[4] NIU F, MENG L S, WU W J, et al. Recent advances in quasi-zero-stiffness vibration isolation systems[J]. Applied Mechanics and Materials, 2013, 397: 295–303.
[5] YUAN Z X, ZHANG Z G, ZENG L Z, et al. Key technologies in active microvibration isolation systems: Modeling, sensing, actuation, and control algorithms[J]. Measurement, 2023, 222: 113658.
[6] 韩超. 负刚度可调式电磁隔振器动力学特性分析及试验研究[D]. 哈尔滨工程大学, 2020.
[7] 张振海, 朱石坚, 楼京俊. 多自由度隔振系统线谱控制技术研究[J]. 舰船科学技术, 2011, 33(1): 49–53.
ZHANG Zhenhai, ZHU Shijian, LOU Jingjun. Line spectra reduction of the multi-degree-of-freedom vibration isolation system [J]. Ship Science and Technology, 2011, 33(1): 49–53.
[8] DING H, JI J, CHEN L-Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics[J]. Mechanical Systems and Signal Processing, 2019, 121: 675–688.
[9] HE Z P, FENG X C, ZHU Y Q, et al. Progress of Stewart Vibration Platform in Aerospace Micro–Vibration Control[J]. Aerospace, 2022, 9(6): 324.
[10] HE J Y, SONG Y R, XIA X Y, et al. Dynamic Coupling Characteristic Analysis of a Loaded Stewart Parallel Robot[C]// 2nd IEEE-Industrial-Electronics-Society Annual On-Line Conference. New York: IEEE, 2023.
[11] YI S C, ZHANG Q, SUN X Q, et al. Simultaneous micropositioning and microvibration control of a magnetostrictive Stewart platform with synthesized strategy[J]. Mechanical Systems and Signal Processing, 2023, 187: 109925.
[12] CHENG S L, WU H T, WANG C Q, et al. The Forward Kinematics Analysis of 6-3 Stewart Parallel Mechanisms[C]// 3rd International Conference on Intelligent Robotics and Applications. Berlin: ICIRA, 2010, 6424: 409–417.
[13] THAYER D, CAMPBELL M, VAGNERS J, et al. Six-Axis Vibration Isolation System Using Soft Actuators and Multiple Sensors[J]. Journal of Spacecraft and Rockets, 2002, 39(2): 206–212.
[14] GENG Z J, PAN G G, HAYNES L S, et al. An Intelligent Control System for Multiple Degree-of-Freedom Vibration Isolation[J]. Journal of Intelligent Material Systems and Structures, 1995, 6(6): 787–800.
[15] ANDERSON E H, FUMO J P, ERWIN R S. Satellite ultraquiet isolation technology experiment (SUITE)[C]// 2000 IEEE Aerospace Conference Proceedings. 2000, 4: 299–313.
[16] ABU HANIEH A, HORODINCA M, PREUMONT A. Six-degree-of-freedom hexapods for active damping and active isolation of vibrations[J]. Journal de Physique IV (Proceedings), 2002, 12(11): 41–48.
[17] ANDERSON E H, LEO D J, HOLCOMB M D. Ultraquiet platform for active vibration isolation[C]// 1996 Symposium on Smart Structures and Materials. San Diego, CA: 1996: 436–451.
[18] FOSHAGE G K, DAVIS T, SULLIVAN J M, et al. Hybrid active/passive actuator for spacecraft vibration isolation and suppression[C]// SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation. 1996: 104–122.
[19] CHEN H J, HOSPODAR E, AGRAWAL B. Development of a Hexapod Laser-based Metrology System for Finer Optical Beam Pointing Control[C]// 22nd AIAA International Communications Satellite Systems Conference & Exhibit 2004 (ICSSC). 2004.
[20] SPANOS J, RAHMAN Z, BLACKWOOD G. A soft 6-axis active vibration isolator[C]// 1995 American Control Conference - ACC’95. 1995, 1: 412–416.
[21] TARANTI C, AGRAWAL B, CRISTI R. An efficient algorithm for vibration suppression to meet pointing requirements of optical payloads[C]// AIAA Guidance, Navigation, and Control Conference and Exhibit. 2001.
[22] GENG Z J, HAYNES L S. Six degree-of-freedom active vibration control using the Stewart platforms[J]. IEEE Transactions on Control Systems Technology, 1994, 2(1): 45–53.
[23] DAVIS L P, CARTER D R, HYDE T T. Second-generation hybrid D-strut[C]// Smart Structures & Materials ’95. 1995: 161–175.
[24] PREUMONT A, HORODINCA M, ROMANESCU I, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration, 2007, 300(3–5): 644–661.
[25] HAUGE G S, CAMPBELL M E. Sensors and control of a space-based six-axis vibration isolation system[J]. Journal of Sound and Vibration, 2004, 269(3–5): 913–931.
[26] HANIEH A A. Active Isolation and Damping of Vibrations via Stewart Platform[D]. Universite libre de bruxelles, 2003.
[27] LIN H, MCINROY J E. Disturbance attenuation in precise hexapod pointing using positive force feedback[J]. Control Engineering Practice, 2006, 14(11): 1377–1386.
[28] 赵龙. 基于超磁致伸缩驱动微振动主动隔振平台的设计研究[D]. 上海交通大学, 2015.
[29] 孙晓芬. 基于磁致伸缩平台的微振动主动控制研究[D]. 上海交通大学, 2015.
[30] 赵龙, 杨斌堂, 孙晓芬. 微振动主动隔振平台的超磁致伸缩驱动器设计[J]. 噪声与振动控制, 2014, 34(5): 203–209.
ZHAO Long, YANG Bintang, SUN Xiaofen. Giant Magnetostrictive Actuator Design of an Active Micro-vibration Isolation Platform[J]. Noise and Vibration Control, 2014, 34(5): 203–209.
[31] 李乔博. 基于Stewart平台的微振动控制分析与实验研究[D]. 上海交通大学, 2020.
[32] 王超新. Stewart微振动隔振平台主动控制方法与实验研究[D]. 上海交通大学, 2019.
[33] CHI W C, MA H, WANG C H, et al. Research on Control of Stewart Platform Integrating Small Attitude Maneuver and Vibration Isolation for High-Precision Payloads on Spacecraft[J]. Aerospace, 2021, 8(11): 333.
[34] CHI W C, CAO D Q, WANG D W, et al. Design and Experimental Study of a VCM-Based Stewart Parallel Mechanism Used for Active Vibration Isolation[J]. Energies, 2015, 8(8): 8001–8019.
[35] 焦健. 柔性连接主动隔振平台的动力学建模与试验研究[D]. 哈尔滨工业大学, 2020.
[36] 李伟鹏, 黄海, 黄舟. 基于Stewart平台的星上微振动主动隔离/抑制[J]. 机械科学与技术, 2015, 34(4): 629–635.
LI Weipeng, HUANG Hai, HUANG Zhou. Active Isolation/Suppression for Satellite Micro-vibration with Stewart Platform[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(4): 629–635.
[37] YANG X L, WU H T, CHEN B, et al. Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation[J]. Journal of Sound and Vibration, 2019, 439: 398–412.
[38] YANG X L, WU H T, LI Y, et al. Dynamics and Isotropic Control of Parallel Mechanisms for Vibration Isolation[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 2027–2034.
[39] WANG C X, XIE X L, CHEN Y H, et al. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators[J]. Journal of Sound and Vibration, 2016, 383: 1–19.
[40] TANG J, CAO D Q, YU T H. Decentralized vibration control of a voice coil motor-based Stewart parallel mechanism: Simulation and experiments[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(1): 132–145.
[41] YUN H, LIU L, LI Q, et al. Investigation on two-stage vibration suppression and precision pointing for space optical payloads[J]. Aerospace Science and Technology, 2020, 96: 105543.
[42] XIE X L, REN M K, ZHENG H B, et al. Investigation on a two-stage platform of large stroke for broadband vertical vibration isolation[J]. Journal of Vibration and Control, 2019, 25(6): 1233–1245.
[43] STEWART D. A platform with six degrees of freedom[J]. Proceedings of the institution of mechanical engineers, 1965, 180(1): 371–386.
[44] DASGUPTA B, MRUTHYUNJAYA T S. The Stewart platform manipulator: a review[J]. Mechanism and Machine Theory, 2000, 35(1): 15–40.
[45] ZHENG Z, ZHANG X, ZHANG J, et al. A Stable Platform to Compensate Motion of Ship Based on Stewart Mechanism[C]// Intelligent Robotics and Applications, ICIRA 2015, PT I. Berlin: Springer-Verlag Berlin, 2015, 9244: 156–164.
[46] LIU Y, WU H, YANG Y, et al. Symmetrical Workspace of 6-UPS Parallel Robot Using Tilt and Torsion Angles[J]. Mathematical Problems in Engineering, London: Hindawi Ltd, 2018, 2018: 6412030.
[47] JAFARI F, MCINROY J E. Orthogonal Gough-Stewart platforms for micromanipulation[J]. IEEE Transactions on Robotics and Automation, 2003, 19(4): 595–603.
[48] JAFARI F, MCINROY J E. Orthogonal gough-stewart platforms for micromanipulation[J]. IEEE Transactions on Robotics and Automation, 2003, 19(4): 595–603.
[49] YI Y, MCINROY J E, JAFARI F. Generating classes of locally orthogonal Gough-Stewart platforms[J]. IEEE Transactions on Robotics, 2005, 21(5): 812–820.
[50] YUN H, LIU L, LI Q, et al. Development of an isotropic Stewart platform for telescope secondary mirror[J]. Mechanical Systems and Signal Processing, 2019, 127: 328–344.
[51] YANG X L, WU H T, LI Y, et al. Dynamics and Isotropic Control of Parallel Mechanisms for Vibration Isolation[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 2027–2034.
[52] LOPES A M, FREIRE H, DE MOURA OLIVEIRA P B, et al. Multi-objective Optimization of Parallel Manipulators using a Particle Swarm Algorithm[C]// 10th WSEAS International Conference on Applied Informatics and Communications. Athens: AIC, 2010.
[53] WU Y, YU K P, JIAO J, et al. Dynamic isotropy design and analysis of a six-DOF active micro-vibration isolation manipulator on satellites[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 408–425.
[54] BANDYOPADHYAY S, GHOSAL A. An algebraic formulation of kinematic isotropy and design of isotropic 6-6 Stewart platform manipulators[J]. Mechanism and Machine Theory, 2008, 43(5): 591–616.
[55] FASSI I, LEGNANI G, TOSI D. Geometrical conditions for the design of partial or full isotropic hexapods[J]. Journal of Robotic Systems, 2005, 22(10): 507–518.
[56] FATTAH A, GHASEMI A M H. Isotropic design of spatial parallel manipulators[J]. International Journal of Robotics Research, 2002, 21(9): 811–824.
[57] BANDYOPADHYAY S, GHOSAL A. An algebraic formulation of static isotropy and design of statically isotropic 6-6 Stewart platform manipulators[J]. Mechanism and Machine Theory, 2009, 44(7): 1360–1370.
[58] JIANG H-Z, HE J-F, TONG Z-Z. Characteristics analysis of joint space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator[J]. Mechanism and Machine Theory, 2010, 45(5): 722–739.
[59] JIANG H Z, HE J F, TONG Z Z, et al. Dynamic isotropic design for modified Gough–Stewart platforms lying on a pair of circular hyperboloids[J]. Mechanism and Machine Theory, 2011, 46(9): 1301–1315.
[60] HE J F, JIANG H Z, TONG Z Z, et al. Study on dynamic isotropy of a class of symmetric spatial parallel mechanisms with actuation redundancy[J]. Journal of Vibration and Control, 2012, 18(8): 1156–1164.
[61] LEGNANI G, FASSI I, GIBERTI H, et al. A new isotropic and decoupled 6-DoF parallel manipulator[J]. Mechanism and Machine Theory, 2012, 58: 64–81.
[62] TSAI K Y, LEE T K. 6-DOF parallel manipulators with better dexterity, rotatability, or singularity-free workspace[J]. Robotica, 2009, 27: 599–606.
[63] MUKHERJEE P, DASGUPTA B, MALLIK A K. Dynamic stability index and vibration analysis of a flexible Stewart platform[J]. Journal of Sound and Vibration, 2007, 307(3–5): 495–512.
[64] TONG Z Z, HE J F, JIANG H Z, et al. Optimal design of a class of generalized symmetric Gough-Stewart parallel manipulators with dynamic isotropy and singularity-free workspace[J]. Robotica, 2012, 30: 305–314.
[65] YANG J F, XU Z B, WU Q W, et al. Dynamic modeling and control of a 6-DOF micro-vibration simulator[J]. Mechanism and Machine Theory, 2016, 104: 350–369.
[66] WU Y, YU K, JIAO J, et al. Dynamic modeling and robust nonlinear control of a six-DOF active micro-vibration isolation manipulator with parameter uncertainties[J]. Mechanism and Machine Theory, 2015, 92: 407–435.
[67] SHENG X, MENQ C-H, TAO T. Analysis of coupled motion constraints and coupling errors for a six-axis magnetic levitation stage[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(11): 2097–2112.
[68] STOEV J, ERTVELDT J, OOMEN T, et al. Tensor methods for MIMO decoupling and control design using frequency response functions[J]. Mechatronics, 2017, 45: 71–81.
[69] LIANG C, LI W P, HUANG H, et al. Decoupling design and control of a spaceborne ultra–stable platform for vibration isolation and precise steering[J]. Journal of Sound and Vibration, 2023, 553: 117668.
[70] GU G-Y, ZHU L-M, SU C-Y, et al. Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 313–332.
[71] SABARIANAND D V, KARTHIKEYAN P, MUTHURAMALINGAM T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems[J]. Mechanical Systems and Signal Processing, 2020, 140: 106634.
[72] YANG X L, WU H T, CHEN B, et al. Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation[J]. Journal of Sound and Vibration, 2019, 439: 398–412.
[73] LI M, ZHANG Y, WANG Y, et al. The pointing and vibration isolation integrated control method for optical payload[J]. Journal of Sound and Vibration, 2019, 438: 441–456.
[74] SUN X Q, LIU Y C, HU W, et al. Design optimization of a giant magnetostrictive driving system for large stroke application considering vibration suppression in working process[J]. Mechanical Systems and Signal Processing, 2020, 138: 106560.
[75] BAI M R, LIU W. Control design of active vibration isolation using synthesis[J]. Journal of Sound and Vibration, 2002, 257(1): 157–175.
[76] HAMPTON R, BEECH G, BEECH N, et al. A Kane’s Rack Dynamics System Model for the Active Isolation[J]. International Journal of Vehicle Systems Modelling & Testing, 2009.
[77] WANG C Y, LU Q, ZHANG K K, et al. Design of micro-vibration suppression platform based on piezo-stack array intelligent structure[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237(4): 799–810.
[78] TANG J, CAO D Q, YU T H. Decentralized vibration control of a voice coil motor-based Stewart parallel mechanism: Simulation and experiments[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(1): 132–145.
[79] WANG M, FU S B, DING J H, et al. Analytical and experimental validation of vibration isolation system with complementary stiffness and composite control[J]. Aerospace Science and Technology, 2023, 133: 108117.
[80] 吴昊. 基于音圈电机和金属橡胶主被动一体式隔振系统研究[D]. 哈尔滨工业大学, 2019.
[81] 叶田园, 庞贺伟, 周元子, 等. 航天器超静平台作动器发展及其关键技术综述[J]. 航天器环境工程, 2022, 39(1): 1–10.
YE Tianyuan, PANG Hewei, ZHOU Yuanzi, et al. Overview of the development and key technologies of actuator for spacecraft ultra-quiet platform[J]. Spacecraft Environment Engineering, 2022, 39(1): 1–10.
[82] YI S C, YANG B T, MENG G. Microvibration isolation by adaptive feedforward control with asymmetric hysteresis compensation[J]. Mechanical Systems and Signal Processing, 2019, 114: 644–657.
[83] LAWRYNCZUK M. Nonlinear predictive control for Hammerstein-Wiener systems[J]. ISA Transactions, New York: Elsevier Science Inc, 2015, 55: 49–62.
[84] GHOZLANE W, KNANI J. Model Reference Adaptive Control Design for Nonlinear Plants[J]. International Journal of Advanced Computer Science and Applications, West Yorkshire: Science & Information Sai Organization Ltd, 2019, 10(3): 116–124.
[85] TAGHIZADEH M, YARMOHAMMADI M J. Development of a Self-tuning PID Controller on Hydraulically Actuated Stewart Platform Stabilizer with Base Excitation[J]. International journal of control automation and systems, Seoul: Inst Control Robotics & Systems, Korean Inst Electrical Engineers, 2018, 16(6): 2990–2999.
[86] JIANG M, RUI X T, ZHU W, et al. Modeling and control of magnetorheological 6-DOF stewart platform based on multibody systems transfer matrix method[J]. Smart materials and structures, Bristol: IOP Publishing Ltd, 2020, 29(3): 035029.
[87] NASHAWATI N, ALBITAR C, DIB A. The evaluation of two methods for active vibration damping using RUS Hexapod platform[J]. Transactions of the institute of measurement and control, London: SAGE Publications Ltd, 2019, 41(5): 1207–1215.
[88] CHEN G L, RUI X T, ABBAS L K, et al. A novel method for the dynamic modeling of Stewart parallel mechanism[J]. Mechanism and machine theory, Oxford: Pergamon-Elsevier Science Ltd, 2018, 126: 397–412.
[89] TOURAJIZADEH H, YOUSEFZADEH M, TAJIK A. Closed Loop Optimal Control of a Stewart Platform Using an Optimal Feedback Linearization Method[J]. International journal of advanced robotic systems, Thousand Oaks: SAGE Publications Inc, 2016, 13: 134.
[90] XU Y F, LIA H, LIU L, et al. Modeling and robust H-infinite control of a novel non-contact ultra-quiet Stewart spacecraft[J]. Acta astronautica, Oxford: Pergamon-Elsevier Science Ltd, 2015, 107: 274–289.
[91] XU A P, XU Z B, ZHANG H, et al. Novel coarse and fine stage parallel vibration isolation pointing platform for space optics payload[J]. Mechanical systems and signal processing, London: Academic Press Ltd- Elsevier Science Ltd, 2024, 213: 111359.
[92] IQBAL S, BHATTI A I. Direct sliding-mode controller design for a 6DOF stewart manipulator[C]// 10Th IEEE International Multitopic Conference 2006, Proceedings. New York: IEEE, 2006: 421-+.
[93] WANG C X, XIE X L, CHEN Y H, et al. Active vibration isolation through a Stewart platform with piezoelectric actuators[J]. Journal of Physics: Conference Series, 2016, 744: 012006.
[94] WEI Y, WANG A, HAN H. Ocean wave active compensation analysis of inverse kinematics for hybrid boarding system based on fuzzy algorithm[J]. Ocean Engineering, Oxford: Pergamon-Elsevier Science Ltd, 2019, 182: 577–583.
[95] CHI W, MA S J, SUN J Q. A hybrid multi-degree-of-freedom vibration isolation platform for spacecrafts by the linear active disturbance rejection control[J]. Applied Mathematics and Mechanics-English Edition, Shanghai: Shanghai Univ, 2020, 41(5): 805–818.
[96] MA H, CHI W, WANG C, et al. Design of a Maglev Stewart Platform for the Microgravity Vibration Isolation[J]. Aerospace, Basel: MDPI, 2022, 9(9): 514.
[97] CHI W, MA H, WANG C, et al. Research on Control of Stewart Platform Integrating Small Attitude Maneuver and Vibration Isolation for High-Precision Payloads on Spacecraft[J]. Aerospace, Basel: MDPI, 2021, 8(11): 333.
[98] HERRMANN G, TURNER M C, POSTLETHWAITE I, et al. Practical Implementation of a Novel Anti-Windup Scheme in a HDD-Dual-Stage Servo-System[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3): 580–592.
[99] SUN W, GAO H, KAYNAK O. Vibration Isolation for Active Suspensions With Performance Constraints and Actuator Saturation[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2): 675–683.
[100] YANG J N, DENG J L, ZHAO J H, et al. A novel parallel multi-harmonic global multi-channel control algorithm for helicopter active vibration control[J]. Control Engineering Practice, 2024, 142: 105772.
[101] PU Y X, ZHOU H L, MENG Z. Multi-channel adaptive active vibration control of piezoelectric smart plate with online secondary path modelling using PZT patches[J]. Mechanical Systems and Signal Processing, 2019, 120: 166–179.
[102] XIE X L, REN M K, YANG D Q, et al. Simulation and experiment on tonal vibration transmission control with a multi-channel global control method[J]. Mechanical Systems and Signal Processing, 2020, 138: 106563.
[103] ZHENG Y, ZHOU Z C, HUANG H. A multi-frequency MIMO control method for the 6DOF micro-vibration exciting system[J]. Acta Astronautica, 2020, 170: 552–569.
[104] ELLIOTT S. Signal processing for active control[M]. Elsevier, 2000.
[105] GONG Z P, DING L, XING H J, et al. Suppression in any configuration : A versatile coupling improved multi-objective manipulation framework for modular active vibration isolation system[J]. Mechanical Systems and Signal Processing, 2022, 166: 108478.
[106] GONG Z, DING L, LI S, et al. Payload-agnostic decoupling and hybrid vibration isolation control for a maglev platform with redundant actuation[J]. Mechanical Systems and Signal Processing, 2021, 146: 106985.
[107] GHAFARIAN M, SHIRINZADEH B, AL-JODAH A, et al. Adaptive Fuzzy Sliding Mode Control for High-Precision Motion Tracking of a Multi-DOF Micro/Nano Manipulator[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4313–4320.
[108] HAMMOUCHE M, MOHAND-OUSAID A, LUTZ P, et al. Robust Interval Luenberger Observer-Based State Feedback Control: Application to a Multi-DOF Micropositioner[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2672–2679.
[109] ENGELS W P, BAUMANN O N, ELLIOTT S J, et al. Centralized and decentralized control of structural vibration and sound radiation[J]. Journal of the Acoustical Society of America, 2006, 119(3): 1487–1495.
[110] KERBER F, HURLEBAUS S, BEADLE B M, et al. Control concepts for an active vibration isolation system[J]. Mechanical Systems and Signal Processing, 2007, 21(8): 3042–3059.
[111] KIM S M, ELLIOTT S J, BRENNAN M J. Decentralized control for multichannel active vibration isolation[J]. IEEE Transactions on Control Systems Technology, 2001, 9(1): 93–100.
[112] 高伟鹏, 贺国, 杨理华, 等. 分散式自适应主动隔振控制算法研究[J]. 振动与冲击, 2020, 39(13): 254–259.
GAO Weipeng, HE Guo, YANG Lihua, et al. Decentralized adaptive active vibration isolation control algorithm[J]. Journal of Vibration And Shock, 2020, 39(13): 254–259.
[113] CHU Y J, MAK C M, ZHAO Y, et al. Performance analysis of a diffusion control method for ANC systems and the network design[J]. Journal of Sound and Vibration, 2020, 475: 115273.
[114] CHU Y J, CHAN S C, ZHAO Y, et al. Performance Analysis of Diffusion Filtered-X Algorithms in Multitask ANC Systems[C]// 2019 27th European Signal Processing Conference (EUSIPCO). 2019: 1–5.
[115] YUAN Y, LU Y, MA X J, et al. Distributed active vibration control for helicopter based on diffusion collaboration[J]. Chinese Journal of Aeronautics, 2024.
[116] FERRER M, DE DIEGO M, PIÑERO G, et al. Active noise control over adaptive distributed networks[J]. Signal Processing, 2015, 107: 82–95.
[117] HAKVOORT W B J, BEIJEN M A. Filtered-error RLS for self-tuning disturbance feedforward control with application to a multi-axis vibration isolator[J]. Mechatronics, 2023, 89: 102934.
[118] YI S C, YANG B T, MENG G. Microvibration isolation by adaptive feedforward control with asymmetric hysteresis compensation[J]. Mechanical Systems and Signal Processing, 2019, 114: 644–657.
[119] SUN Y, HAN J W, YIN P L, et al. An active hybrid control approach with the Fx-RLS adaptive algorithm for active-passive isolation structures[J]. Smart Materials and Structures, 2020, 29(10): 105005.
[120] WU L F, QIU X J, BURNETT I S, et al. Decoupling feedforward and feedback structures in hybrid active noise control systems for uncorrelated narrowband disturbances[J]. Journal of Sound and Vibration, 2015, 350: 1–10.
[121] WANG M, FANG X, WANG Y Y, et al. A dual-loop active vibration control technology with an RBF-RLS adaptive algorithm[J]. Mechanical Systems and Signal Processing, 2023, 191: 110079.
[122] JIANG Y, CHEN S M, MENG H, et al. A novel adaptive step-size hybrid active noise control system[J]. Applied Acoustics, 2021, 182: 108285.
[123] ZHU W H, TRYGGVASON B, PIEDBOEUF J C. On active acceleration control of vibration isolation systems[J]. Control Engineering Practice, 2006, 14(8): 863–873.
[124] PASCO Y, BERRY A. Consideration of piezoceramic actuator nonlinearity in the active isolation of deterministic vibration[J]. Journal of Sound and Vibration, 2006, 289(3): 481–508.
[125] YAMAMURA M, LUO Z W, HAYAKAWA Y. Adaptive control of underactuated system using virtual constraints approach[J]. The Japan Joint Automatic Control Conference, 2006.
[126] PREUMONT A, FRANÇOIS A, BOSSENS F, et al. Force feedback versus acceleration feedback in active vibration isolation[J]. Journal of Sound and Vibration, 2002, 257(4): 605–613.
[127] TJEPKEMA D, VAN DIJK J, SOEMERS H M J R. Sensor fusion for active vibration isolation in precision equipment[J]. Journal of Sound and Vibration, 2012, 331(4): 735–749.
[128] BRENNAN M J, ANANTHAGANESHAN K A, ELLIOTT S J. Instabilities due to instrumentation phase-lead and phase-lag in the feedback control of a simple vibrating system[J]. Journal of Sound and Vibration, 2007, 304(3): 466–478.
[129] COPPOLA G, LIU K. Control of a unique active vibration isolator with a phase compensation technique and automatic on/off switching[J]. Journal of Sound and Vibration, 2010, 329(25): 5233–5248.
[130] BEIJEN M A, TJEPKEMA D, VAN DIJK J. Two-sensor control in active vibration isolation using hard mounts[J]. Control Engineering Practice, 2014, 26: 82–90.
[131] BEIJEN M A, HEERTJES M F, BUTLER H, et al. Mixed feedback and feedforward control design for multi-axis vibration isolation systems[J]. Mechatronics, 2019, 61: 106–116. 
[132] 张庆伟, 俞翔, 闫政涛, 等. 电磁作动器出力特性及自适应抑制算法[J]. 振动与冲击, 2022, 41(1): 298–304.
Zhang Qingwei, Yu Xiang, Yan Zhengtao, et al. Output Characteristics of Electromagnetic Actuators and Adaptive Suppression Algorithms [J]. Vibration and Shock, 2022, 41(1): 298–304.
[133] 杨纪楠, 焦素娟, 龙新华. 基于反馈FxLMS-鲁棒混合控制算法的主动隔振平台研究[J]. 振动与冲击, 2024, 43(19): 59–67.
Yang, Jinan, Jiao, Sujuan, Long, Xinhua. Study on Active Vibration Isolation Platform Based on Feedback FxLMS-Robust Hybrid Control Algorithm[J]. Vibration and Shock, 2024, 43(19): 59–67.
[134] AKHTAR M T. Narrowband feedback active noise control systems with secondary path modeling using gain-controlled additive random noise[J]. Digital Signal Processing, 2021, 111: 102976
[135] STROHM J N, LOHMANN B. A Fast Convergence FxLMS Algorithm for Vibration Damping of a Quarter Car[C]// 2018 IEEE Conference on Decision and Control (CDC). New York: IEEE, 2018: 6094–6100.
[136] YANG T, ZHU L, LI X, et al. An online secondary path modeling method with regularized step size and self-tuning power scheduling[J]. Journal of the Acoustical Society of America, Melville: Acoustical Soc Amer Amer Inst Physics, 2018, 143(2): 1076–1084.
[137] 方昱斌, 朱晓锦, 胡佳明, 等. 一种VSSFxLMS算法及其在多自由度微振动控制中的应用[J]. 振动工程学报, 2020, 33(3): 467–476.
FANG Yubin, ZHU Xiaojin, HU Jiaming, et al. A VSSFxLMS algorithm and its application in multiple DOF micro-vibration control[J]. Journal of Vibration Engineering, 2020, 33(3): 467–476.
[138] 方昱斌, 朱晓锦, 杨龙飞, 等. 多频未知时变扰动下的结构微振动鲁棒自适应控制[J]. 振动工程学报, 2023, 36(5): 1309–1317.
FANG Yubin, ZHU Xiaojin, YANG Longfei, et al. Robust adaptive control for micro-vibration under multiple unknown and time-varying disturbances[J]. Journal of Vibration Engineering, 2023, 36(5): 1309–1317.
[139] 聂赞坎, 徐宗本. 随机逼近及自适应算法[M]. 科学出版社, 2003.
[140] WU M Y, LIU X G, MENG H, et al. Cost function research for SPSA algorithm: An application of the cross-correlation function in periodic disturbance energy estimation[J]. Mechanical Systems and Signal Processing, 2022, 164: 108251.
[141] ZHOU D, DEBRUNNER V. ANC algorithms that do not require identifying the secondary path[C]// IEEE International Conference on Acoustics, Speech, and Signal Processing. 2005, 3: 125–128.
[142] MANDIC D P, KANNA S, CONSTANTINIDES A G. On the Intrinsic Relationship Between the Least Mean Square and Kalman Filters[J]. IEEE Signal Processing Magazine, 2015, 32(6): 117–122.
[143] TURPATI S, MORAM V. Improved performance of impulse active noise control using active function threshold with absolute harmonic variable step-size algorithm[J]. Microprocessors and microsystems, Amsterdam: Elsevier, 2020, 77: 103158.
 

[1] LI L, WANG L, YUAN L, et al. Micro-vibration suppression methods and key technologies for high-precision space optical instruments[J]. Acta Astronautica, 2021, 180: 417–428.
[2] LI L, TAN L Y, KONG L, et al. The influence of flywheel micro vibration on space camera and vibration suppression[J]. Mechanical Systems and Signal Processing, 2018, 100: 360–370.
[3] ULGEN D, ERTUGRUL O L, OZKAN M Y. Measurement of ground borne vibrations for foundation design and vibration isolation of a high-precision instrument[J]. Measurement, 2016, 93: 385–396.
[4] NIU F, MENG L S, WU W J, et al. Recent advances in quasi-zero-stiffness vibration isolation systems[J]. Applied Mechanics and Materials, 2013, 397: 295–303.
[5] YUAN Z X, ZHANG Z G, ZENG L Z, et al. Key technologies in active microvibration isolation systems: Modeling, sensing, actuation, and control algorithms[J]. Measurement, 2023, 222: 113658.
[6] 韩超. 负刚度可调式电磁隔振器动力学特性分析及试验研究[D]. 哈尔滨工程大学, 2020.
[7] 张振海, 朱石坚, 楼京俊. 多自由度隔振系统线谱控制技术研究[J]. 舰船科学技术, 2011, 33(1): 49–53.
ZHANG Zhenhai, ZHU Shijian, LOU Jingjun. Line spectra reduction of the multi-degree-of-freedom vibration isolation system [J]. Ship Science and Technology, 2011, 33(1): 49–53.
[8] DING H, JI J, CHEN L-Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics[J]. Mechanical Systems and Signal Processing, 2019, 121: 675–688.
[9] HE Z P, FENG X C, ZHU Y Q, et al. Progress of Stewart Vibration Platform in Aerospace Micro–Vibration Control[J]. Aerospace, 2022, 9(6): 324.
[10] HE J Y, SONG Y R, XIA X Y, et al. Dynamic Coupling Characteristic Analysis of a Loaded Stewart Parallel Robot[C]// 2nd IEEE-Industrial-Electronics-Society Annual On-Line Conference. New York: IEEE, 2023.
[11] YI S C, ZHANG Q, SUN X Q, et al. Simultaneous micropositioning and microvibration control of a magnetostrictive Stewart platform with synthesized strategy[J]. Mechanical Systems and Signal Processing, 2023, 187: 109925.
[12] CHENG S L, WU H T, WANG C Q, et al. The Forward Kinematics Analysis of 6-3 Stewart Parallel Mechanisms[C]// 3rd International Conference on Intelligent Robotics and Applications. Berlin: ICIRA, 2010, 6424: 409–417.
[13] THAYER D, CAMPBELL M, VAGNERS J, et al. Six-Axis Vibration Isolation System Using Soft Actuators and Multiple Sensors[J]. Journal of Spacecraft and Rockets, 2002, 39(2): 206–212.
[14] GENG Z J, PAN G G, HAYNES L S, et al. An Intelligent Control System for Multiple Degree-of-Freedom Vibration Isolation[J]. Journal of Intelligent Material Systems and Structures, 1995, 6(6): 787–800.
[15] ANDERSON E H, FUMO J P, ERWIN R S. Satellite ultraquiet isolation technology experiment (SUITE)[C]// 2000 IEEE Aerospace Conference Proceedings. 2000, 4: 299–313.
[16] ABU HANIEH A, HORODINCA M, PREUMONT A. Six-degree-of-freedom hexapods for active damping and active isolation of vibrations[J]. Journal de Physique IV (Proceedings), 2002, 12(11): 41–48.
[17] ANDERSON E H, LEO D J, HOLCOMB M D. Ultraquiet platform for active vibration isolation[C]// 1996 Symposium on Smart Structures and Materials. San Diego, CA: 1996: 436–451.
[18] FOSHAGE G K, DAVIS T, SULLIVAN J M, et al. Hybrid active/passive actuator for spacecraft vibration isolation and suppression[C]// SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation. 1996: 104–122.
[19] CHEN H J, HOSPODAR E, AGRAWAL B. Development of a Hexapod Laser-based Metrology System for Finer Optical Beam Pointing Control[C]// 22nd AIAA International Communications Satellite Systems Conference & Exhibit 2004 (ICSSC). 2004.
[20] SPANOS J, RAHMAN Z, BLACKWOOD G. A soft 6-axis active vibration isolator[C]// 1995 American Control Conference - ACC’95. 1995, 1: 412–416.
[21] TARANTI C, AGRAWAL B, CRISTI R. An efficient algorithm for vibration suppression to meet pointing requirements of optical payloads[C]// AIAA Guidance, Navigation, and Control Conference and Exhibit. 2001.
[22] GENG Z J, HAYNES L S. Six degree-of-freedom active vibration control using the Stewart platforms[J]. IEEE Transactions on Control Systems Technology, 1994, 2(1): 45–53.
[23] DAVIS L P, CARTER D R, HYDE T T. Second-generation hybrid D-strut[C]// Smart Structures & Materials ’95. 1995: 161–175.
[24] PREUMONT A, HORODINCA M, ROMANESCU I, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration, 2007, 300(3–5): 644–661.
[25] HAUGE G S, CAMPBELL M E. Sensors and control of a space-based six-axis vibration isolation system[J]. Journal of Sound and Vibration, 2004, 269(3–5): 913–931.
[26] HANIEH A A. Active Isolation and Damping of Vibrations via Stewart Platform[D]. Universite libre de bruxelles, 2003.
[27] LIN H, MCINROY J E. Disturbance attenuation in precise hexapod pointing using positive force feedback[J]. Control Engineering Practice, 2006, 14(11): 1377–1386.
[28] 赵龙. 基于超磁致伸缩驱动微振动主动隔振平台的设计研究[D]. 上海交通大学, 2015.
[29] 孙晓芬. 基于磁致伸缩平台的微振动主动控制研究[D]. 上海交通大学, 2015.
[30] 赵龙, 杨斌堂, 孙晓芬. 微振动主动隔振平台的超磁致伸缩驱动器设计[J]. 噪声与振动控制, 2014, 34(5): 203–209.
ZHAO Long, YANG Bintang, SUN Xiaofen. Giant Magnetostrictive Actuator Design of an Active Micro-vibration Isolation Platform[J]. Noise and Vibration Control, 2014, 34(5): 203–209.
[31] 李乔博. 基于Stewart平台的微振动控制分析与实验研究[D]. 上海交通大学, 2020.
[32] 王超新. Stewart微振动隔振平台主动控制方法与实验研究[D]. 上海交通大学, 2019.
[33] CHI W C, MA H, WANG C H, et al. Research on Control of Stewart Platform Integrating Small Attitude Maneuver and Vibration Isolation for High-Precision Payloads on Spacecraft[J]. Aerospace, 2021, 8(11): 333.
[34] CHI W C, CAO D Q, WANG D W, et al. Design and Experimental Study of a VCM-Based Stewart Parallel Mechanism Used for Active Vibration Isolation[J]. Energies, 2015, 8(8): 8001–8019.
[35] 焦健. 柔性连接主动隔振平台的动力学建模与试验研究[D]. 哈尔滨工业大学, 2020.
[36] 李伟鹏, 黄海, 黄舟. 基于Stewart平台的星上微振动主动隔离/抑制[J]. 机械科学与技术, 2015, 34(4): 629–635.
LI Weipeng, HUANG Hai, HUANG Zhou. Active Isolation/Suppression for Satellite Micro-vibration with Stewart Platform[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(4): 629–635.
[37] YANG X L, WU H T, CHEN B, et al. Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation[J]. Journal of Sound and Vibration, 2019, 439: 398–412.
[38] YANG X L, WU H T, LI Y, et al. Dynamics and Isotropic Control of Parallel Mechanisms for Vibration Isolation[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 2027–2034.
[39] WANG C X, XIE X L, CHEN Y H, et al. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators[J]. Journal of Sound and Vibration, 2016, 383: 1–19.
[40] TANG J, CAO D Q, YU T H. Decentralized vibration control of a voice coil motor-based Stewart parallel mechanism: Simulation and experiments[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(1): 132–145.
[41] YUN H, LIU L, LI Q, et al. Investigation on two-stage vibration suppression and precision pointing for space optical payloads[J]. Aerospace Science and Technology, 2020, 96: 105543.
[42] XIE X L, REN M K, ZHENG H B, et al. Investigation on a two-stage platform of large stroke for broadband vertical vibration isolation[J]. Journal of Vibration and Control, 2019, 25(6): 1233–1245.
[43] STEWART D. A platform with six degrees of freedom[J]. Proceedings of the institution of mechanical engineers, 1965, 180(1): 371–386.
[44] DASGUPTA B, MRUTHYUNJAYA T S. The Stewart platform manipulator: a review[J]. Mechanism and Machine Theory, 2000, 35(1): 15–40.
[45] ZHENG Z, ZHANG X, ZHANG J, et al. A Stable Platform to Compensate Motion of Ship Based on Stewart Mechanism[C]// Intelligent Robotics and Applications, ICIRA 2015, PT I. Berlin: Springer-Verlag Berlin, 2015, 9244: 156–164.
[46] LIU Y, WU H, YANG Y, et al. Symmetrical Workspace of 6-UPS Parallel Robot Using Tilt and Torsion Angles[J]. Mathematical Problems in Engineering, London: Hindawi Ltd, 2018, 2018: 6412030.
[47] JAFARI F, MCINROY J E. Orthogonal Gough-Stewart platforms for micromanipulation[J]. IEEE Transactions on Robotics and Automation, 2003, 19(4): 595–603.
[48] JAFARI F, MCINROY J E. Orthogonal gough-stewart platforms for micromanipulation[J]. IEEE Transactions on Robotics and Automation, 2003, 19(4): 595–603.
[49] YI Y, MCINROY J E, JAFARI F. Generating classes of locally orthogonal Gough-Stewart platforms[J]. IEEE Transactions on Robotics, 2005, 21(5): 812–820.
[50] YUN H, LIU L, LI Q, et al. Development of an isotropic Stewart platform for telescope secondary mirror[J]. Mechanical Systems and Signal Processing, 2019, 127: 328–344.
[51] YANG X L, WU H T, LI Y, et al. Dynamics and Isotropic Control of Parallel Mechanisms for Vibration Isolation[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 2027–2034.
[52] LOPES A M, FREIRE H, DE MOURA OLIVEIRA P B, et al. Multi-objective Optimization of Parallel Manipulators using a Particle Swarm Algorithm[C]// 10th WSEAS International Conference on Applied Informatics and Communications. Athens: AIC, 2010.
[53] WU Y, YU K P, JIAO J, et al. Dynamic isotropy design and analysis of a six-DOF active micro-vibration isolation manipulator on satellites[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 408–425.
[54] BANDYOPADHYAY S, GHOSAL A. An algebraic formulation of kinematic isotropy and design of isotropic 6-6 Stewart platform manipulators[J]. Mechanism and Machine Theory, 2008, 43(5): 591–616.
[55] FASSI I, LEGNANI G, TOSI D. Geometrical conditions for the design of partial or full isotropic hexapods[J]. Journal of Robotic Systems, 2005, 22(10): 507–518.
[56] FATTAH A, GHASEMI A M H. Isotropic design of spatial parallel manipulators[J]. International Journal of Robotics Research, 2002, 21(9): 811–824.
[57] BANDYOPADHYAY S, GHOSAL A. An algebraic formulation of static isotropy and design of statically isotropic 6-6 Stewart platform manipulators[J]. Mechanism and Machine Theory, 2009, 44(7): 1360–1370.
[58] JIANG H-Z, HE J-F, TONG Z-Z. Characteristics analysis of joint space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator[J]. Mechanism and Machine Theory, 2010, 45(5): 722–739.
[59] JIANG H Z, HE J F, TONG Z Z, et al. Dynamic isotropic design for modified Gough–Stewart platforms lying on a pair of circular hyperboloids[J]. Mechanism and Machine Theory, 2011, 46(9): 1301–1315.
[60] HE J F, JIANG H Z, TONG Z Z, et al. Study on dynamic isotropy of a class of symmetric spatial parallel mechanisms with actuation redundancy[J]. Journal of Vibration and Control, 2012, 18(8): 1156–1164.
[61] LEGNANI G, FASSI I, GIBERTI H, et al. A new isotropic and decoupled 6-DoF parallel manipulator[J]. Mechanism and Machine Theory, 2012, 58: 64–81.
[62] TSAI K Y, LEE T K. 6-DOF parallel manipulators with better dexterity, rotatability, or singularity-free workspace[J]. Robotica, 2009, 27: 599–606.
[63] MUKHERJEE P, DASGUPTA B, MALLIK A K. Dynamic stability index and vibration analysis of a flexible Stewart platform[J]. Journal of Sound and Vibration, 2007, 307(3–5): 495–512.
[64] TONG Z Z, HE J F, JIANG H Z, et al. Optimal design of a class of generalized symmetric Gough-Stewart parallel manipulators with dynamic isotropy and singularity-free workspace[J]. Robotica, 2012, 30: 305–314.
[65] YANG J F, XU Z B, WU Q W, et al. Dynamic modeling and control of a 6-DOF micro-vibration simulator[J]. Mechanism and Machine Theory, 2016, 104: 350–369.
[66] WU Y, YU K, JIAO J, et al. Dynamic modeling and robust nonlinear control of a six-DOF active micro-vibration isolation manipulator with parameter uncertainties[J]. Mechanism and Machine Theory, 2015, 92: 407–435.
[67] SHENG X, MENQ C-H, TAO T. Analysis of coupled motion constraints and coupling errors for a six-axis magnetic levitation stage[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(11): 2097–2112.
[68] STOEV J, ERTVELDT J, OOMEN T, et al. Tensor methods for MIMO decoupling and control design using frequency response functions[J]. Mechatronics, 2017, 45: 71–81.
[69] LIANG C, LI W P, HUANG H, et al. Decoupling design and control of a spaceborne ultra–stable platform for vibration isolation and precise steering[J]. Journal of Sound and Vibration, 2023, 553: 117668.
[70] GU G-Y, ZHU L-M, SU C-Y, et al. Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 313–332.
[71] SABARIANAND D V, KARTHIKEYAN P, MUTHURAMALINGAM T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems[J]. Mechanical Systems and Signal Processing, 2020, 140: 106634.
[72] YANG X L, WU H T, CHEN B, et al. Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation[J]. Journal of Sound and Vibration, 2019, 439: 398–412.
[73] LI M, ZHANG Y, WANG Y, et al. The pointing and vibration isolation integrated control method for optical payload[J]. Journal of Sound and Vibration, 2019, 438: 441–456.
[74] SUN X Q, LIU Y C, HU W, et al. Design optimization of a giant magnetostrictive driving system for large stroke application considering vibration suppression in working process[J]. Mechanical Systems and Signal Processing, 2020, 138: 106560.
[75] BAI M R, LIU W. Control design of active vibration isolation using synthesis[J]. Journal of Sound and Vibration, 2002, 257(1): 157–175.
[76] HAMPTON R, BEECH G, BEECH N, et al. A Kane’s Rack Dynamics System Model for the Active Isolation[J]. International Journal of Vehicle Systems Modelling & Testing, 2009.
[77] WANG C Y, LU Q, ZHANG K K, et al. Design of micro-vibration suppression platform based on piezo-stack array intelligent structure[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237(4): 799–810.
[78] TANG J, CAO D Q, YU T H. Decentralized vibration control of a voice coil motor-based Stewart parallel mechanism: Simulation and experiments[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(1): 132–145.
[79] WANG M, FU S B, DING J H, et al. Analytical and experimental validation of vibration isolation system with complementary stiffness and composite control[J]. Aerospace Science and Technology, 2023, 133: 108117.
[80] 吴昊. 基于音圈电机和金属橡胶主被动一体式隔振系统研究[D]. 哈尔滨工业大学, 2019.
[81] 叶田园, 庞贺伟, 周元子, 等. 航天器超静平台作动器发展及其关键技术综述[J]. 航天器环境工程, 2022, 39(1): 1–10.
YE Tianyuan, PANG Hewei, ZHOU Yuanzi, et al. Overview of the development and key technologies of actuator for spacecraft ultra-quiet platform[J]. Spacecraft Environment Engineering, 2022, 39(1): 1–10.
[82] YI S C, YANG B T, MENG G. Microvibration isolation by adaptive feedforward control with asymmetric hysteresis compensation[J]. Mechanical Systems and Signal Processing, 2019, 114: 644–657.
[83] LAWRYNCZUK M. Nonlinear predictive control for Hammerstein-Wiener systems[J]. ISA Transactions, New York: Elsevier Science Inc, 2015, 55: 49–62.
[84] GHOZLANE W, KNANI J. Model Reference Adaptive Control Design for Nonlinear Plants[J]. International Journal of Advanced Computer Science and Applications, West Yorkshire: Science & Information Sai Organization Ltd, 2019, 10(3): 116–124.
[85] TAGHIZADEH M, YARMOHAMMADI M J. Development of a Self-tuning PID Controller on Hydraulically Actuated Stewart Platform Stabilizer with Base Excitation[J]. International journal of control automation and systems, Seoul: Inst Control Robotics & Systems, Korean Inst Electrical Engineers, 2018, 16(6): 2990–2999.
[86] JIANG M, RUI X T, ZHU W, et al. Modeling and control of magnetorheological 6-DOF stewart platform based on multibody systems transfer matrix method[J]. Smart materials and structures, Bristol: IOP Publishing Ltd, 2020, 29(3): 035029.
[87] NASHAWATI N, ALBITAR C, DIB A. The evaluation of two methods for active vibration damping using RUS Hexapod platform[J]. Transactions of the institute of measurement and control, London: SAGE Publications Ltd, 2019, 41(5): 1207–1215.
[88] CHEN G L, RUI X T, ABBAS L K, et al. A novel method for the dynamic modeling of Stewart parallel mechanism[J]. Mechanism and machine theory, Oxford: Pergamon-Elsevier Science Ltd, 2018, 126: 397–412.
[89] TOURAJIZADEH H, YOUSEFZADEH M, TAJIK A. Closed Loop Optimal Control of a Stewart Platform Using an Optimal Feedback Linearization Method[J]. International journal of advanced robotic systems, Thousand Oaks: SAGE Publications Inc, 2016, 13: 134.
[90] XU Y F, LIA H, LIU L, et al. Modeling and robust H-infinite control of a novel non-contact ultra-quiet Stewart spacecraft[J]. Acta astronautica, Oxford: Pergamon-Elsevier Science Ltd, 2015, 107: 274–289.
[91] XU A P, XU Z B, ZHANG H, et al. Novel coarse and fine stage parallel vibration isolation pointing platform for space optics payload[J]. Mechanical systems and signal processing, London: Academic Press Ltd- Elsevier Science Ltd, 2024, 213: 111359.
[92] IQBAL S, BHATTI A I. Direct sliding-mode controller design for a 6DOF stewart manipulator[C]// 10Th IEEE International Multitopic Conference 2006, Proceedings. New York: IEEE, 2006: 421-+.
[93] WANG C X, XIE X L, CHEN Y H, et al. Active vibration isolation through a Stewart platform with piezoelectric actuators[J]. Journal of Physics: Conference Series, 2016, 744: 012006.
[94] WEI Y, WANG A, HAN H. Ocean wave active compensation analysis of inverse kinematics for hybrid boarding system based on fuzzy algorithm[J]. Ocean Engineering, Oxford: Pergamon-Elsevier Science Ltd, 2019, 182: 577–583.
[95] CHI W, MA S J, SUN J Q. A hybrid multi-degree-of-freedom vibration isolation platform for spacecrafts by the linear active disturbance rejection control[J]. Applied Mathematics and Mechanics-English Edition, Shanghai: Shanghai Univ, 2020, 41(5): 805–818.
[96] MA H, CHI W, WANG C, et al. Design of a Maglev Stewart Platform for the Microgravity Vibration Isolation[J]. Aerospace, Basel: MDPI, 2022, 9(9): 514.
[97] CHI W, MA H, WANG C, et al. Research on Control of Stewart Platform Integrating Small Attitude Maneuver and Vibration Isolation for High-Precision Payloads on Spacecraft[J]. Aerospace, Basel: MDPI, 2021, 8(11): 333.
[98] HERRMANN G, TURNER M C, POSTLETHWAITE I, et al. Practical Implementation of a Novel Anti-Windup Scheme in a HDD-Dual-Stage Servo-System[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3): 580–592.
[99] SUN W, GAO H, KAYNAK O. Vibration Isolation for Active Suspensions With Performance Constraints and Actuator Saturation[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2): 675–683.
[100] YANG J N, DENG J L, ZHAO J H, et al. A novel parallel multi-harmonic global multi-channel control algorithm for helicopter active vibration control[J]. Control Engineering Practice, 2024, 142: 105772.
[101] PU Y X, ZHOU H L, MENG Z. Multi-channel adaptive active vibration control of piezoelectric smart plate with online secondary path modelling using PZT patches[J]. Mechanical Systems and Signal Processing, 2019, 120: 166–179.
[102] XIE X L, REN M K, YANG D Q, et al. Simulation and experiment on tonal vibration transmission control with a multi-channel global control method[J]. Mechanical Systems and Signal Processing, 2020, 138: 106563.
[103] ZHENG Y, ZHOU Z C, HUANG H. A multi-frequency MIMO control method for the 6DOF micro-vibration exciting system[J]. Acta Astronautica, 2020, 170: 552–569.
[104] ELLIOTT S. Signal processing for active control[M]. Elsevier, 2000.
[105] GONG Z P, DING L, XING H J, et al. Suppression in any configuration : A versatile coupling improved multi-objective manipulation framework for modular active vibration isolation system[J]. Mechanical Systems and Signal Processing, 2022, 166: 108478.
[106] GONG Z, DING L, LI S, et al. Payload-agnostic decoupling and hybrid vibration isolation control for a maglev platform with redundant actuation[J]. Mechanical Systems and Signal Processing, 2021, 146: 106985.
[107] GHAFARIAN M, SHIRINZADEH B, AL-JODAH A, et al. Adaptive Fuzzy Sliding Mode Control for High-Precision Motion Tracking of a Multi-DOF Micro/Nano Manipulator[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4313–4320.
[108] HAMMOUCHE M, MOHAND-OUSAID A, LUTZ P, et al. Robust Interval Luenberger Observer-Based State Feedback Control: Application to a Multi-DOF Micropositioner[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2672–2679.
[109] ENGELS W P, BAUMANN O N, ELLIOTT S J, et al. Centralized and decentralized control of structural vibration and sound radiation[J]. Journal of the Acoustical Society of America, 2006, 119(3): 1487–1495.
[110] KERBER F, HURLEBAUS S, BEADLE B M, et al. Control concepts for an active vibration isolation system[J]. Mechanical Systems and Signal Processing, 2007, 21(8): 3042–3059.
[111] KIM S M, ELLIOTT S J, BRENNAN M J. Decentralized control for multichannel active vibration isolation[J]. IEEE Transactions on Control Systems Technology, 2001, 9(1): 93–100.
[112] 高伟鹏, 贺国, 杨理华, 等. 分散式自适应主动隔振控制算法研究[J]. 振动与冲击, 2020, 39(13): 254–259.
GAO Weipeng, HE Guo, YANG Lihua, et al. Decentralized adaptive active vibration isolation control algorithm[J]. Journal of Vibration And Shock, 2020, 39(13): 254–259.
[113] CHU Y J, MAK C M, ZHAO Y, et al. Performance analysis of a diffusion control method for ANC systems and the network design[J]. Journal of Sound and Vibration, 2020, 475: 115273.
[114] CHU Y J, CHAN S C, ZHAO Y, et al. Performance Analysis of Diffusion Filtered-X Algorithms in Multitask ANC Systems[C]// 2019 27th European Signal Processing Conference (EUSIPCO). 2019: 1–5.
[115] YUAN Y, LU Y, MA X J, et al. Distributed active vibration control for helicopter based on diffusion collaboration[J]. Chinese Journal of Aeronautics, 2024.
[116] FERRER M, DE DIEGO M, PIÑERO G, et al. Active noise control over adaptive distributed networks[J]. Signal Processing, 2015, 107: 82–95.
[117] HAKVOORT W B J, BEIJEN M A. Filtered-error RLS for self-tuning disturbance feedforward control with application to a multi-axis vibration isolator[J]. Mechatronics, 2023, 89: 102934.
[118] YI S C, YANG B T, MENG G. Microvibration isolation by adaptive feedforward control with asymmetric hysteresis compensation[J]. Mechanical Systems and Signal Processing, 2019, 114: 644–657.
[119] SUN Y, HAN J W, YIN P L, et al. An active hybrid control approach with the Fx-RLS adaptive algorithm for active-passive isolation structures[J]. Smart Materials and Structures, 2020, 29(10): 105005.
[120] WU L F, QIU X J, BURNETT I S, et al. Decoupling feedforward and feedback structures in hybrid active noise control systems for uncorrelated narrowband disturbances[J]. Journal of Sound and Vibration, 2015, 350: 1–10.
[121] WANG M, FANG X, WANG Y Y, et al. A dual-loop active vibration control technology with an RBF-RLS adaptive algorithm[J]. Mechanical Systems and Signal Processing, 2023, 191: 110079.
[122] JIANG Y, CHEN S M, MENG H, et al. A novel adaptive step-size hybrid active noise control system[J]. Applied Acoustics, 2021, 182: 108285.
[123] ZHU W H, TRYGGVASON B, PIEDBOEUF J C. On active acceleration control of vibration isolation systems[J]. Control Engineering Practice, 2006, 14(8): 863–873.
[124] PASCO Y, BERRY A. Consideration of piezoceramic actuator nonlinearity in the active isolation of deterministic vibration[J]. Journal of Sound and Vibration, 2006, 289(3): 481–508.
[125] YAMAMURA M, LUO Z W, HAYAKAWA Y. Adaptive control of underactuated system using virtual constraints approach[J]. The Japan Joint Automatic Control Conference, 2006.
[126] PREUMONT A, FRANÇOIS A, BOSSENS F, et al. Force feedback versus acceleration feedback in active vibration isolation[J]. Journal of Sound and Vibration, 2002, 257(4): 605–613.
[127] TJEPKEMA D, VAN DIJK J, SOEMERS H M J R. Sensor fusion for active vibration isolation in precision equipment[J]. Journal of Sound and Vibration, 2012, 331(4): 735–749.
[128] BRENNAN M J, ANANTHAGANESHAN K A, ELLIOTT S J. Instabilities due to instrumentation phase-lead and phase-lag in the feedback control of a simple vibrating system[J]. Journal of Sound and Vibration, 2007, 304(3): 466–478.
[129] COPPOLA G, LIU K. Control of a unique active vibration isolator with a phase compensation technique and automatic on/off switching[J]. Journal of Sound and Vibration, 2010, 329(25): 5233–5248.
[130] BEIJEN M A, TJEPKEMA D, VAN DIJK J. Two-sensor control in active vibration isolation using hard mounts[J]. Control Engineering Practice, 2014, 26: 82–90.
[131] BEIJEN M A, HEERTJES M F, BUTLER H, et al. Mixed feedback and feedforward control design for multi-axis vibration isolation systems[J]. Mechatronics, 2019, 61: 106–116. 
[132] 张庆伟, 俞翔, 闫政涛, 等. 电磁作动器出力特性及自适应抑制算法[J]. 振动与冲击, 2022, 41(1): 298–304.
Zhang Qingwei, Yu Xiang, Yan Zhengtao, et al. Output Characteristics of Electromagnetic Actuators and Adaptive Suppression Algorithms [J]. Vibration and Shock, 2022, 41(1): 298–304.
[133] 杨纪楠, 焦素娟, 龙新华. 基于反馈FxLMS-鲁棒混合控制算法的主动隔振平台研究[J]. 振动与冲击, 2024, 43(19): 59–67.
Yang, Jinan, Jiao, Sujuan, Long, Xinhua. Study on Active Vibration Isolation Platform Based on Feedback FxLMS-Robust Hybrid Control Algorithm[J]. Vibration and Shock, 2024, 43(19): 59–67.
[134] AKHTAR M T. Narrowband feedback active noise control systems with secondary path modeling using gain-controlled additive random noise[J]. Digital Signal Processing, 2021, 111: 102976
[135] STROHM J N, LOHMANN B. A Fast Convergence FxLMS Algorithm for Vibration Damping of a Quarter Car[C]// 2018 IEEE Conference on Decision and Control (CDC). New York: IEEE, 2018: 6094–6100.
[136] YANG T, ZHU L, LI X, et al. An online secondary path modeling method with regularized step size and self-tuning power scheduling[J]. Journal of the Acoustical Society of America, Melville: Acoustical Soc Amer Amer Inst Physics, 2018, 143(2): 1076–1084.
[137] 方昱斌, 朱晓锦, 胡佳明, 等. 一种VSSFxLMS算法及其在多自由度微振动控制中的应用[J]. 振动工程学报, 2020, 33(3): 467–476.
FANG Yubin, ZHU Xiaojin, HU Jiaming, et al. A VSSFxLMS algorithm and its application in multiple DOF micro-vibration control[J]. Journal of Vibration Engineering, 2020, 33(3): 467–476.
[138] 方昱斌, 朱晓锦, 杨龙飞, 等. 多频未知时变扰动下的结构微振动鲁棒自适应控制[J]. 振动工程学报, 2023, 36(5): 1309–1317.
FANG Yubin, ZHU Xiaojin, YANG Longfei, et al. Robust adaptive control for micro-vibration under multiple unknown and time-varying disturbances[J]. Journal of Vibration Engineering, 2023, 36(5): 1309–1317.
[139] 聂赞坎, 徐宗本. 随机逼近及自适应算法[M]. 科学出版社, 2003.
[140] WU M Y, LIU X G, MENG H, et al. Cost function research for SPSA algorithm: An application of the cross-correlation function in periodic disturbance energy estimation[J]. Mechanical Systems and Signal Processing, 2022, 164: 108251.
[141] ZHOU D, DEBRUNNER V. ANC algorithms that do not require identifying the secondary path[C]// IEEE International Conference on Acoustics, Speech, and Signal Processing. 2005, 3: 125–128.
[142] MANDIC D P, KANNA S, CONSTANTINIDES A G. On the Intrinsic Relationship Between the Least Mean Square and Kalman Filters[J]. IEEE Signal Processing Magazine, 2015, 32(6): 117–122.
[143] TURPATI S, MORAM V. Improved performance of impulse active noise control using active function threshold with absolute harmonic variable step-size algorithm[J]. Microprocessors and microsystems, Amsterdam: Elsevier, 2020, 77: 103158.
PDF(1486 KB)

51

Accesses

0

Citation

Detail

Sections
Recommended

/