Pneumatic massive transfer mechanism prick crystal vibration reduction control

LIU Qiang1, 2, FAN Jingchao1, NIU Pingjuan2, CHEN Yunzhe2, SUN Haiwei3

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (11) : 157-162.

PDF(1354 KB)
PDF(1354 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (11) : 157-162.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Pneumatic massive transfer mechanism prick crystal vibration reduction control

  • LIU Qiang1,2, FAN Jingchao*1, NIU Pingjuan2, CHEN Yunzhe2, SUN Haiwei3
Author information +
History +

Abstract

In response to the issue of the impact of beam torsional vibration on the transfer accuracy during the high-speed, high-frequency piercing process of the pneumatic needle piercing mass transfer mechanism, a bilateral side-hung linear motor active vibration reduction scheme based on dynamic equilibrium method was proposed. Based on the synchronous reverse motion of the piercing system and the follow-up system, a mathematical model of the torsional vibration amplitude of the beam was established, and the transient analysis of the motion process was conducted using the finite element method. In the current control of the linear motor, the BP-PID (Back Propagation-Process Identifier) method was used to adjust the parameters, which improved the convergence speed of the current function and reduced the overshoot of the starting current, optimizing the control method of the motor thrust. Experiments have shown that the amplitude of the beam was reduced by 86.74% in the uninterrupted acceleration mode and by 84.47% in the high-speed start-stop mode, proving that the dynamic equilibrium method active vibration reduction structure has a significant effect on suppressing the torsional vibration of the beam in the pneumatic needle piercing mass transfer device, which is of great importance for improving the mass transfer accuracy.

Key words

mass transfer / Mini/Micro LED / active vibration reduction / finite element

Cite this article

Download Citations
LIU Qiang1, 2, FAN Jingchao1, NIU Pingjuan2, CHEN Yunzhe2, SUN Haiwei3. Pneumatic massive transfer mechanism prick crystal vibration reduction control[J]. Journal of Vibration and Shock, 2025, 44(11): 157-162

References

[1] 王伟, 赵甜甜, 刘强, 等. Mini/Micro LED巨量转移技术研究与发展现状[J]. 光学 精密工程, 2023, 31(02): 183-199.
WANG Wei, ZHAO Tian-tian, LIU Qiang, et al. Research and development status of Mini/Micro LED Mass transfer technology[J]. Optics and Precision Engineering, 2023, 31(02): 183-199.
[2] GAO Han, ZOU Ming-jie, ZHONG Chen-ming, et al. Advances in pixel driving technology for micro-LED displays[J]. Nanoscale, 2023, 15, 17232-17248.
[3] SONG Wei ,LIU Qiang ,WANG Wei . Error analysis and compensation for Mini LED mass transfer visual positioning system[J]. Measurement, 2024, 234: 114913.
[4] PAN Chang-xu, GUO Chang, WANG Xian-chi, et al. Wafer-Scale Micro-LEDs Transferred onto an Adhesive Film for Planar and Flexible Displays[J]. Adv. Mater. Technol. 2020, 5: 2000549.
[5] 黄招凤, 陈罡彪, 游燚, 等. 巨量转移方法及设备:CN115132620A [P]. 2022-09-30.
HUANG Zhao-feng, CHEN Gang-biao, YOU Yi, et al. Large volume transfer method and equipment: CN115132620A [P]. 2022-09-30.
[6] Park J, Sin Y, Kim J, et al. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation[J]. Applied Surface Science, 2016, 384, 353-359.
[7] AZEEM W, 刘召军, 伏桂月. 基于Ⅲ族氮化物的Micro-LED挑战及潜在解决方案(英文)[J]. 液晶与显示, 2023, 38(07): 892-909.
AZEEM W, LIU Zhao-jun, FU Gui-yue. Challenges and potential solutions for Micro-LED based on Group III nitrides[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(07): 892-909. 
[8] Lee D, Cho S, Park C, et al. Fluidic self-assembly for Micro LED displays by controlled viscosity[J]. Nature, 2023, 619: 755-760.
[9] Chang W, Kim J, Kim M. et al. Concurrent self-assembly of RGB micro LEDs for next-generation displays[J]. Nature, 2023, 617: 287-291.
[10] CHOI M, JANG B, LEE V, et al. Stretchable Active Matrix Inorganic Light-Emitting Diode Display Enabled by Overlay-Aligned Roll-Transfer Printing [J]. Adv. Funct. Mater, 2017, 27: 1606005.
[11] HUANG Zhen-long, LIN Yuan. Transfer printing technologies for soft electronics[J]. Nanoscale, 2022, 14(45): 16749-16760.
[12] Sharma K B, Jang B, Lee E J, et al. Load-Controlled Roll Transfer of Oxide Transistors for Stretchable Electronics[J]. Advanced Functional Materials, 2013, 23(16): 2024-2032.
[13] SUN Wei-gao, JI Ling-fei, LIN Zhen-yuan, et al. Low-Energy UV Ultrafast Laser Controlled Lift-Off for High-Quality Flexible GaN-Based Device[J]. Advanced Functional Materials, 2022, 32(8): 22701-22712.
[14] NIE Yun-fei, Qin Chang-liang, TANG Qian et al. Numerical simulation of heat and mass transfer in laser directed energy deposition[J]. Optics and Laser Technology, 2024, 176, 111024.
[15] 翁寅祥, 杨依领, 吴高华, 等. 柔顺宏微操作系统动力学建模及振动抑制研究[J]. 振动与冲击, 2024, 43(09): 69-76+120.
WENG Yin-xiang, YANG Yi-ling, WU Gao-hua, et al. Dynamic Modeling and Vibration Suppression of Compliant macro and Micro operating Systems[J]. Journal of Vibration and Shock, 2019, 43(09): 69-76 120.
[16] 陈俊生, 姚振强, 汤振荣. 复合磨床砂轮架模态分析与试验研究[J]. 振动与冲击, 2024, 43(05): 268-272+291.
CHEN Jun-sheng, YAO Zhen-qiang, TANG Zhen-rong. Modal Analysis and Experimental Study of the Compound Grinding Machine Tool Rest[J]. Journal of Vibration and Shock, 2024, 43(05): 268-272+291. 
[17] Rovers M M J, Jansen W J, Compter C J, et al. Analysis Method of the Dynamic Force and Torque Distribution in the Magnet Array of a Commutated Magnetically Levitated Planar Actuator.[J]. IEEE Trans. Industrial Electronics, 2012, 59(5): 2157-2166.
[18] 刘强, 高晴利, 王伟, 等. 激光巨量转移复合型运动平台用洛伦兹磁轴承[J]. 机械工程学报, 2024, 60(01): 198-209.
LIU Qiang, GAO Qing-li, WANG Wei, et al. Lorentz Magnetic Bearing for Laser Mass Transfer Composite Motion Platform[J]. Journal of Mechanical Engineering, 2024, 60(01): 198-209. 
[19] 刘强, 马宁, 王伟, 等. 针刺巨量转移平台用高推力聚磁式直线电机[J]. 光学 精密工程, 2024, 32(09): 1347-1359.
LIU Qiang, MA Ning, WANG Wei, et al. High Thrust Poly-Magnetic Linear Motor for Puncture Volume Transfer Platform[J]. Optics and Precision Engineering, 2024, 32(09): 1347-1359.
[20] 牛德树, 樊竞超, 张利辉, 等. 一种激光解胶针刺气动芯片巨量转移机构: CN117012681A[P]. 2023-11-07.
NIU De-shu, FAN Jing-chao, ZHANG Li-hui, et al. A large transfer mechanism of laser degumming needle pneumatic chip: CN117012681A[P]. 2023-11-07.
[21] 涂之艺, 陈亮亮, 伍家驹, 等. 基于多维可视化的高速永磁电机转子强度优化设计[J]. 振动与冲击, 2022,41(18): 236-243.
TU Zhi-yi, CHEN Liang-liang, WU Jia-jun, et al. Optimization Design of High-Speed Permanent Magnet Motor Rotor Strength Based on Multidimensional Visualization[J]. Journal of Vibration and Shock, 2022, 41(18): 236-243.
[22] 陈树海, 郭安丰, 吴邵庆, 等. 基于BP神经网络的星箭界面动载荷识别[J]. 振动与冲击, 2023, 42(05): 279-286+304.
CHEN Shu-hai, GUO An-feng, WU Shao-qing, et al. Dynamic Load Identification of Star-Arrow Interface Based on BP Neural Network[J]. Journal of Vibration and Shock, 2023, 42(05): 279-286+304. 
[23] 吕雪军, 李国平, 胡力, 等. 基于BP神经网络的FTS输出控制[J]. 振动与冲击, 2019, 38(07): 77-85.
LV Xue-jun, LI Guo-ping, HU Li, et al. BP Neural Network-based Output Control of FTS[J]. Journal of Vibration and Shock, 2019, 38(07): 77-85.
PDF(1354 KB)

51

Accesses

0

Citation

Detail

Sections
Recommended

/