Free vibration of porous fiber-reinforced sandwich composite panels with various ply angles

SUN Ruijun, YANG Fazhan, ZHANG Jingjing

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (12) : 110-121.

PDF(2615 KB)
PDF(2615 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (12) : 110-121.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Free vibration of porous fiber-reinforced sandwich composite panels with various ply angles

  • SUN Ruijun,YANG Fazhan*,ZHANG Jingjing
Author information +
History +

Abstract

To analyze the dynamic performance of variable-angle ply porous fiber-reinforced sandwich composite panels under simply supported boundary conditions, the vibration differential equations for the porous double-layer sandwich panels were established based on the layerwise theory and the Rayleigh-Ritz method. These equations were subsequently solved using the Navier method. The dynamic characteristics at various ply angles were analyzed using Abaqus and the modal tests were performed with [0°/90°] and [±45°] ply orientations to validate the accuracy of the theoretical model. A parametric analysis of the porous double-layer sandwich panel was conducted using the theoretical model, followed by structural optimization using a genetic algorithm. The research reveals that laminated panels with a porosity of 94.854% and fiber ply angles in multiples of 45° exhibit outstanding dynamic performance. These results provide a reference for the design and manufacture of such structures.

Key words

porous fiber-reinforced membrane / free vibration / ply angle / modal test / finite element simulation / composite panel

Cite this article

Download Citations
SUN Ruijun, YANG Fazhan, ZHANG Jingjing. Free vibration of porous fiber-reinforced sandwich composite panels with various ply angles[J]. Journal of Vibration and Shock, 2025, 44(12): 110-121

References

[1] POVOLO M, MACCAFERRI E, COCCHI D, et al. Damping and mechanical behavior of composite laminates interleaved with rubbery nanofibers[J]. Composite Structures, 2021, 272: 114228-114236. 
[2] 徐超,林松,王立峰,等.基于Layerwise理论的共固化黏弹阻尼复合材料动特性分析[J].振动与冲击,2015,34(01):6-12. 
XU Chao, LIN Song, WANG Lifeng, et al.. Layerwise dynamic analysis of composite laminates with co-cured viscoelastic damping layer [J]. Journal of Vibration and Shock, 2015, 34(01): 6-12. 
[3] 黄志诚,秦朝烨,褚福磊.附加黏弹阻尼层的薄壁构件振动问题研究综述[J].振动与冲击,2014,33(07):105-113. 
HUANG Zhicheng, QIN Zhaoye, CHU Fulei. A review about vibration problems of thin-walled structures with viscoelastic damping layer[J]. Journal of Vibration and Shock, 2014, 33(07): 105-113.
[4] ZHANG H, SUN W, LUO H, et al. A method of layout optimization for MFC actuators in active vibration control of composite laminates[J]. Applied Acoustics, 2024, 220: 109961-109979. 
[5] SAMAN S, RAMAZAN-ALI J, ABDOLLAH M. Free vibration analysis of delaminated soft-core sandwich plates[J]. European Journal of Mechanics/ A Solids, 2023, 101: 105068-105088. 
[6] KHAN K, PATEL B, NATH Y. Dynamic characteristics of bimodular laminated panels using an efficient layerwise theory[J]. Composite Structures, 2015, 132: 759- 771. 
[7] ROY S, THAKUR N S, ROY C. Free vibration analysis of laminated composite hybrid and GFRP shells based on higher order zigzag theory with experimental validation[J]. European Journal of Mechanics-A/Solids, 2021, 88: 104261-104283. 
[8] SCIUVA D M, SORRENTI M. Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory[J]. Composite Structures, 2019, 227: 111324-111344. 
[9] SELVARA R, SUBRAMANI M, MORE G, et al. Dynamic responses of laminated composite sandwich beam with double-viscoelastic core layers[J]. Materials Today: Proceedings, 2021, 46: 7468-7472. 
[10] 罗忠,杨坤,梅志远.纤维增强复合材料动力学固有特性及阻尼特性分析[J].材料导报,2013,27(S1):126-129+132.
LUO Zhong, YANG Kun, MEI Zhiyuan. The analysis of the dynamic natural characteristics and damping of the GFRP laminate composite[J]. Materials reports, 2013, 27(S1): 126-129+132. 
[11] DASHATAN S H, SIT M, ZHANG Z Y, et al. Enhanced vibration damping and viscoelastic properties of flax/epoxy composites and their carbon fiber hybrid laminates[J]. Composites Part A, 2023, 175: 107819-107828. 
[12] 胡明勇,王安稳.纤维增强黏弹性复合材料层合板的自由振动和应力分析[J].工程力学, 2010, 27(08): 10-14+20. 
HU Mingyong, WANG Anwen. Free vibration and stresses analysis of fiber-reinforced viscoelastic composite laminated plates[J]. Engineering Mechanics, 2010, 27(08): 10-14+20.
[13] DAI Z C, SHI Y, KIANI Y. Free-damped vibration analysis of viscoelastic foam-filled FGM anisogrid lattice cylindrical shells[J]. Thin-Walled Structures, 2024, 195: 111373-111390. 
[14] ZHENG C S, ZHOU Y F, FAN Y P, et al. Dynamic characteristics of novel damping sandwich composite open cylindrical shell: From theory to simulation[J]. Thin-Walled Structures, 2024, 197: 111657-111679.
[15] 王轩,刘武帅,余芬,等.穿孔对平纹编织面板蜂窝夹芯结构侧向压缩性能的影响[J].中国机械工程, 2019, 30(17): 2076-2083.
WANG Xuan, LIU Wushuai, YU Fen, et al. Effects of perforation on edgewise compression performances of honeycomb sandwich structures with plain woven panels[J]. China Mechanical Engineering, 2019, 30(17): 2076-2083. 
[16] GUO J H, WEN W D, ZHANG H J, et al. Warp-loaded mechanical performance of 3D orthogonal layer-to-layer woven composite perforated structures with different apertures[J]. Composite Structures, 2021, 278: 114720-114737. 
[17] 贾近,姜明,肖海英,等.高低温交变湿热环境下外加载荷对不同孔隙率CFRP 拉伸力学性能影响[J].哈尔滨工业大学学报, 2019, 51(05): 23-31.
JIA Jin, JIANG Ming, XIAO Haiying, et al. Influence of external loading on tensile mechanical properties of CFRP with different porosity under high and low temperature alternating humidity-heat environment[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 23-31. 
[18] ZHOU X Q, YU D Y, SHAO X Y, et al. Asymptotic analysis on flexural dynamic characteristics for a laminated composite plate with embedded and perforated periodically viscoelastic damping material core[J]. Composite Structures, 2016, 154: 616-633. 
[19] GUO D L, ZHANG H H, JI X L, et al. Mechanical modeling of arbitrarily perforated orthotropic composites with the numerical manifold method[J]. Engineering Analysis with Boundary Elements, 2024, 302: 158289-158303. 
[20] SOBHANI E, MASOODI R A, AHMADI-PARI R A. Circumferential vibration analysis of nano-porous-sandwich assembled spherical-cylindrical-conical shells under elastic boundary conditions[J]. Engineering Structures, 2022, 273: 115094-115112. 
[21] 唐玉玲,韩露,张峻霞,等.曲面碳纤维增强树脂复合材料点阵夹芯结构的弯曲和振动特性[J].复合材料学报, 2023, 40(06): 3651-3661. 
TANG Yuling, HAN Lu, ZHANG Junxia, et al. Bending and vibration performance of curved carbon fiber reinforced polymer pyramidal sandwich structure[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3651-3661. 
[22] FENG Z Q, YANG X L, KESHAVARZPOUR H, et al. Free vibration analysis of hybrid CNT/GPL-reinforced Porous composite plates under fluid-loading[J]. Aerospace Science and Technology, 2024, 148: 109116-109138. 
[23] KALGUTKAR P A, BANERJEE S. Dynamic instability analysis of perforated stiffened laminated composite panels subjected to non-uniform in-plane edge load under hygrothermal condition[J]. Thin-Walled Structures, 2022, 181: 109961-109980. 
[24] TALEZADEHLARI A. Free vibration analysis of perforated composite cylindrical shell and panel using multi-domain generalized differential quadrature (GDQ) method[J]. Composite Structures, 2022, 287: 115337-115358. 
[25] 程小全,王飞,胡仁伟,等.含穿孔损伤复合材料桨叶结构的振动特性[J].复合材料学报, 2010, 27(02): 117-122. 
CHENG Xiaoquan, WANG Fei, HU Renwei, et al. Vibration performance of composite blade segment with a perforation damage[J]. Acta Materiae Compositae Sinica, 2010, 27(02): 117-122. 
[26] FAZILATI J, KHALAFI V. Dynamic analysis of the composite laminated repaired perforated plates by using multi-patch IGA method[J]. Chinese Journal of Aeronautics, 2021, 34(01): 266-280. 
[27] GAO Z J, LI H, ZHAO J, et al. Analyses of dynamic characteristics of functionally graded porous (FGP) sandwich plates with viscoelastic materials-filled square-celled core[J]. Engineering Structures, 2021, 248: 113242-113261. 
PDF(2615 KB)

150

Accesses

0

Citation

Detail

Sections
Recommended

/