Numerical research on drop impact response characteristics of modular charge

WU Shuang, YU Yonggang, CHANG Renjiu

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (12) : 279-289.

PDF(2723 KB)
PDF(2723 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (12) : 279-289.
SHOCK AND EXPLOSION

Numerical research on drop impact response characteristics of modular charge

  • WU Shuang,YU Yonggang*,CHANG Renjiu
Author information +
History +

Abstract

To analyze the damage characteristics of module charge dropping in a variety of ground environment, a dynamic finite element model of the modular charge was established on the basis of nonlinear finite element theory. The drop impact process of the modular charge was simulated using ANSYS/LS-DYNA software. A numerical simulation was conducted to evaluate the impact of dropping postures and ground characteristics on the stress, strain, and acceleration responses of module charge. The stress, strain and acceleration data of the modular charge when it was dropped from a height of 2m onto three different types of ground: sand, concrete, and Q235 steel plate, with three dropping postures: bottom-downward vertical drop, horizontal drop, and a 45° inclined drop. The primary objective is to examine the deformation and damage characteristics of combustible cartridges, with a particular emphasis on the influence of drop posture and ground characteristic. The results show that the ranking of module charge rupture risk is: inclined 45° dropping, horizontal dropping, and bottom down vertical dropping. The harder the ground is, the greater the stress, strain, and overload will be, and the time to reach the peak value will be shorter. Under the three dropping posture conditions, the nitrocellulose collides with each other but do not break, and the safety risk area is located at the bottom of the combustible cartridge. The rupture occurred at a 45° inclined drop to both the concrete ground and the Q235 steel plate. The damage modes observed include localised denting, matrix cracking and shearing. These research findings can be utilized as a reference for the improvement of the structural design of module charges.  

Key words

modular charge / drop impact / drop posture / ground characteristic / finite element simulation

Cite this article

Download Citations
WU Shuang, YU Yonggang, CHANG Renjiu. Numerical research on drop impact response characteristics of modular charge[J]. Journal of Vibration and Shock, 2025, 44(12): 279-289

References

[1] 王泽山. 模块装药技术及其进展[J]. 含能材料, 2004, 12(A01): 122.
WANG Ze-shan. Modular charge technology and its progress[J]. Chinese Journal of Energetic Materials, 2004, 12(A01):122.
[2] Field J E, Pa rry M A, Palmer S J, et a1. Deformation and explosive properties HMX powers and polymer bonded explosive [C] // 9th Symposium (International) on Detonation,Portland, 1989: 886-896.
[3] Rae P J, Gold rein H T, Palmer S J, et a1. Studies of the failure mechanisms of polymer-bonded explosive by high resolution more interferometry and environmental scanning electron microscopy[C] // 11th Symposium(International)on Detonation, Colorado, 1998: 66-75. 
[4] 姜夕博, 金朋刚, 王建灵, 等. 冲击载荷作用下两种HMX基抗高过载炸药损伤特性[J]. 含能材料, 2017, 25(12): 991-996.
JIANG Xi-bo, JIN Peng-gang, WANG Jian-ling, et al. Damage characteristics of two HMX-•based anti-overloaded explosives under shock loading[J]. Chinese Journal of Energetic Materials, 2017, 25(12): 991-996.
[5] 聂少云, 薛鹏伊, 代晓淦. 模拟多层穿靶过程装药安全性评价方法[J]. 火炸药学报, 2020, 43(5): 537-542. 
NIE Shao-yun, XUE Peng-yi, DAI Xiao-gan . Method of evaluating the safety of charging in a multi-layer penetration process[J]. Chinese Journal of Explosives & Propellant, 2020, 43(5): 537-542. 
[6] 蔡宣明, 张伟, 高玉波, 等. 三轴向冲击载荷作用下RDX基PBX炸药损伤模式与表征[J]. 振动与冲击, 2019, 38(5): 86-91. 
CAI Xuan-ming, ZHANG Wei, GAO Yu-bo, et al. Damage mode and characterization of RDX-based PBX explosive under tri-axial impact loading[J]. Journal of Vibration and Shock, 2019, 38(5): 86-91.
[7] 张萌昭, 屈可朋, 周涛, 等. 两次冲击作用下压装炸药损伤规律研究[J]. 爆破器材, 2021, 50(6): 30-36. 
ZHANG Meng-zhao, QU Ke-peng, ZHOU Tao, et al. Research on the damage law of pressed explosives under double-pulse loading[J]. Explosive Materials, 2021, 50(6): 30-36.
[8] 刘静, 余永刚. 不同升温速率下模块装药慢速烤燃特性的数值模拟[J]. 兵工学报, 2019, 40 (5): 990-995.
LIU Jing, YU Yong-gang. Simulation of slow cook-off for modular charges at different heating rates[J]. Acta Armamentarii, 2019,  40 (5): 990-995. 
[9] 刘静, 赵非玉. 不同升温速率下模块装药的烤燃特性分析[J]. 装备环境工程, 2022, 19(3): 11 -16. 
LIU Jing, ZHAO Fei-yu. Analysis of cook-off characteristics of modular charges at different heating rates[J]. Equipment Environmental Engineering. 2022, 19(3): 11 -16. 
[10] 钱环宇, 余永刚, 刘静. 火炮射击环境温度对膛内模块装药热安全性的影响分析[J]. 兵工学报, 2020, 41(2):  254-261.
QIAN Huan-yu YU Yong-gang, LIU Jing. The influence of ambient temperature after gun firing on thermal safety of modular charge in the chamber[J]. Acta Armamentarii, 2020, 41(2): 254-261. 
[11] QIAN Huan-yu YU Yong-gang, LIU Jing. Effects of module number and firing condition on charge thermal safety in gun chamber[J]. Defence Technology, 2022, 18(01):27-37.
[12] 王魁全, 席兰霞, 刘虹秋, 等. GJB 5309.36-2004 火工品试验方法第36部分:2m跌落试验[S]. 陕西: 国防科学技术工业委员会, 2004. 
WANG Kui-quan, XI Lan-xia, LIU Hong-qiu, et al. GJB 5309.36-2004 Test methods of initiating explosive devices-Part 36: 2 meter drop test.[S]. Shanxi: Commission of Science Technology and Industry for National Defense, 2004.
[13] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2020. 
XIN Chun-liang, XUE Zai-qing, TU Jian, et al. Handbook of common material parameters for finite element analysis[M]. Beijing: China Machine Press, 2020.
[14] 米巧丽, 卢明章, 李本威, 等. 发射装药老化对于跌落安全性的影响[J]. 兵器装备工程学报, 2023, 44(2): 8-14.
MI Qiao-li, LU Ming-zhang, LI Ben-wei, et al. Effect of the aging of propellant charge on drop safety[J]. Journal of Ordnance Equipment Engineering, 2023, 44(2): 8-14. 
[15] 陈奕婷. 一种耕走分离式微耕机的设计研究[D]. 重庆: 重庆理工大学, 2019. 
CHEN Yi-ting. Design of working and walking separation tiller[D]. Chongqing: Chongqing University of Technology, 2019. 
[16] 姜涛, 张宪, 乔欣, 等. 基于SPH法的土壤削切刀具三维数值模拟及优化[J]. 机电工程, 2009, 26(6): 58-67. 
JIANG Tao, ZHANG Xian, QIAO Xin, et al. 3-D numerical simulation and optimization of soil cutting tool based on SPH[J]. Mechanical & Electrical Engineering Magazine, 2009, 26(6): 58-67.
[17] 南宇翔, 蒋健伟, 王树有, 等. 子弹药落地冲击响应数值模拟及实验验证[J]. 振动与冲击, 2013, 32(3): 182-187. 
NAN Yu-xiang, JIANG Jian-wei, WANG Shu-you, et al. Numerical simulation and test for impact response of submunitions drop[J]. Journal of Vibration and Shock, 2013, 32(3): 182-187.
[18] 田书春,周伟良,李忠山,等. 新型黏结剂和水性交联剂在模压可燃药筒中的应用[J]. 爆破器材, 2018, 47(3): 27-30, 36. 
TIAN Shu-chun, ZHOU Wei- liang, LI Zhong-shan, et al. Application of a new adhesive and a waterborne cross-linking agent in molded combustible cartridge cases[J]. Explosive Materials, 2018, 47(3): 27-30, 36.
[19] 金保森,卢智先. 材料力学试验[M]. 北京: 机械工业出版社, 2003.
JIN Bao-sen, LU Zhi-xian. Experiments in mechanics of materials[M]. Beijing: China Machine Press, 2003.
[20] 张天伟, 代淑兰, 李曼丽, 等. 多孔发射药冲击受力模拟仿真[J]. 含能材料, 2021, 29(6): 492-500. 
ZHANG Tian-wei, DAI Shu-lan, LI Man-li, et al. Numerical study on impact force of porous propellant[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2021, 29(6): 492-500. 
[21] 杨望, 蔡敢为, 杨坚. 土壤直剪试验的动力学仿真[J]. 农业机械学报, 2011, 42(7): 96-101. 
YANG Wang, CAI Gan-wei, YANG Jian. Dynamic simulation of direct shear test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7): 96-101. 
[22] 高鹏, 徐鹏. 装药弹体高空跌落冲击动态响应研究[J]. 测试技术学报, 2024, 38(2): 179-186.
GAO Peng, XU Peng. Dynamic response of charged projectile under high drop impact [J]. Journal of Test and Measurement Technology, 2024, 38(2): 179-186.
[23] 张洪林. 模块装药性能研究[D]. 江苏: 南京理工大学, 2009.
ZHANG Hong-lin. The study of performances for modular propelling charge[D]. Jiangsu: Nanjing University of Science & Technology, 2009.
PDF(2723 KB)

Accesses

Citation

Detail

Sections
Recommended

/